The OmpA Gene of Xanthomonas axonopodis pv. glycines is Involved in Pathogenesis of Pustule Disease on Soybean

  • Dusit AthinuwatEmail author
  • Siraprapa Brooks


The goal of this study was to elucidate the role of the outer membrane protein A (ompA) gene of Xanthomonas axonopodis pv. glycines in bacterial pustule pathogenesis of soybean. An ompA mutant of X. axonopodis pv. glycines KU-P-SW005 was shown to significantly decrease cellulase, pectate lyase, and polysaccharide production. The production of these proteins in the ompA mutant was approximately five times lower than that of the wildtype. The ompA mutant also exhibited modified biofilm development. More importantly, the mutant reduced disease severity to the soybean. Ten days after inoculation, the virulence rating of the susceptible soybean cv. SJ4 inoculated with the ompA mutant was 11.23%, compared with 87.98% for the complemented ompA mutant. Production of cellulase, pectate lyase, polysaccharide was restored, biofilm, and pustule numbers were restored in the complemented ompA mutant that did not differ from the wild type. Taken together, these data suggest that OmpA-mediated invasion plays an important role in protein secretion during pathogenesis to soybean.



This work was supported by Thailand Research Fund and Thammasat University under the research grant for new scholars [Grant No. MRG5580202, 2012]. We thank S. Prathuangwong for kind recommendations. The authors wish to express special thanks to the Central Scientific Instrument Center (CSIC), Faculty of Science and Technology, Thammasat for providing scientific instrument support.


  1. 1.
    Bradbury JF (1986) Guide to plant pathogenic bacteria. CABI Publishing, Farnham RoyalGoogle Scholar
  2. 2.
    Moffett ML, Croft BJ (1983) Xanthomonas in plant bacterial disease. In: Fahy PC, Persley GJ (eds) A diagnostic guide. Academic Press, New York, pp 189–228Google Scholar
  3. 3.
    Kearney B, Staskawicz BJ (1990) Wildespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346:385–386CrossRefGoogle Scholar
  4. 4.
    Prathuangwong S, Khandej K (1998) An artificial inoculation method of soybean seed with Xanthomonas campestris pv. glycines for inducing disease expression. Kasetsart J (Nat Sci) 32:84–89Google Scholar
  5. 5.
    Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980CrossRefGoogle Scholar
  6. 6.
    Cerutti A, Jauneau A, Auriac MC, Lauber E, Martinez Y, Chiarenza S, Leonhardt N, Berthomé R, Noël LD (2017) Immunity at cauliflower hydathodes controls systemic infection by Xanthomonas campestris pv. campestris. Plant Physiol 174(2):700–716CrossRefGoogle Scholar
  7. 7.
    Salmond GPC (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Ann Rev Phytopathol 32:181–200CrossRefGoogle Scholar
  8. 8.
    Denny TP (1995) Involvement of bacterial polysaccharides in plant pathogenesis. Ann Rev Phytopathol 33:173–197CrossRefGoogle Scholar
  9. 9.
    Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386CrossRefGoogle Scholar
  10. 10.
    Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63(2):266–292Google Scholar
  11. 11.
    Boch J, Bonas U (2001) Gram-negative plant pathogenic bacteria. Contrib Microbiol 8:186–196CrossRefGoogle Scholar
  12. 12.
    Jin QL, Thilmony R, Zwiesler-Vollick J, He SY (2003) Type III protein secretion in Pseudomonas syringae. Microbes Infect 5(4):301–310CrossRefGoogle Scholar
  13. 13.
    Kikot GE, Hours R, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microb 49:231–241CrossRefGoogle Scholar
  14. 14.
    Block A, Alfano JR (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys. Curr Opin Microbiol 14(1):39–46CrossRefGoogle Scholar
  15. 15.
    Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20(4):199–208CrossRefGoogle Scholar
  16. 16.
    Goto M, Okabe N (1959) Studies on the cellulolytic enzymes of phytopathogenic bacteria. Part 4. On the nature of cellulose in the lesions of black rot of cauliflower (Xanthomonas campestris) and citrus canker (Xanthomonas citri). Rep Fac Agr Shizuoka Univ 9:21–23Google Scholar
  17. 17.
    Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409CrossRefGoogle Scholar
  18. 18.
    Knösel D, Garber ED (1967) Pektolitische une cellulolytische enzyme bei Xanthomonas campestris (Pammel) Dowson. Phytopathology 59:194–202CrossRefGoogle Scholar
  19. 19.
    Reddy MN, Stuteville DL, Sorensen EL (1974) Xylanase activity of Xanthomonas arfarfae in culture and during pathogenesis of bacterial leaf spot of alfalfa. Phytopathology 80:215–223CrossRefGoogle Scholar
  20. 20.
    Kaewnum S, Prathuangwong S, Burr T (2006) Pectate lyase homolog, xagP, in Xanthomonas axonopodis pv. glycines is associated with hypersensitive response induction on tobacco. Phytopathology 96(11):1230–1236CrossRefGoogle Scholar
  21. 21.
    Jones SB, Fett WF (1985) Fate of Xanthomonas campestris infiltrated into soybean leaves: an ultrastructurastuz. Phytopathology 75:733–741CrossRefGoogle Scholar
  22. 22.
    Park HJ, Han SW, Oh C, Lee S, Ra D, Lee SH, Heu S (2008) Avirulence gene diversity of Xanthomonas axonopodis pv. glycines isolated in Korea. J Microbiol Biotechnol 18(9):1500–1509Google Scholar
  23. 23.
    Thowthampitak J, Shaffer BT, Prathuangwong S, Loper JE (2008) Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. Phytopathology 98:1252–1260CrossRefGoogle Scholar
  24. 24.
    Fett WF, Dunn MF (1987) Auxin production by plant-pathogenic Pseudomonads and Xanthomonads. Appl Environ Microbiol 53:1839–1845Google Scholar
  25. 25.
    Chatnaparat T, Prathuangwong S, Lindow SE (2016) Global pattern of gene expression of Xanthomonas axonopodis pv. glycines within soybean leaves. Mol Plant Microbe Interact 29(6):508–522CrossRefGoogle Scholar
  26. 26.
    Bosshart PD, Iordanov I, Garzon-Coral C, Demange P, Engel A, Milon A, Müller DJ (2012) The transmembrane protein KpOmpA anchoring the outer membrane of Klebsiella pneumoniae unfolds and refolds in response to tensile load. Structure 20(1):121–127CrossRefGoogle Scholar
  27. 27.
    Pautsch A, Schulz GE (1998) Structure of the outer membrane protein a transmembrane domain. Nat Struct Biol 5(11):1013–1017CrossRefGoogle Scholar
  28. 28.
    Confer AW, Ayalew S (2013) The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Vet Microbiol 163:207–222CrossRefGoogle Scholar
  29. 29.
    Shrivastava S, Mande SS (2008) Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS ONE 3(8):1–11CrossRefGoogle Scholar
  30. 30.
    Fleites LA, Mensi I, Gargani D, Zhang S, Rott P, Gabriel DW (2013) Xanthomonas albilineans OmpA1 appears to be functionally modular and both the OMC and C-like domains are necessary for leaf scald disease of sugarcane. Mol Plant Microbe Interact 26(10):1200–1210CrossRefGoogle Scholar
  31. 31.
    Mohan Nair MK, Venkitanarayanan K (2007) Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr Res 62:664–669CrossRefGoogle Scholar
  32. 32.
    Singamsetty VK, Wang Y, Shimada H, Prasadarao NV (2008) Outer membrane protein a expression in Enterobacter sakazakii is required to induce microtubule condensation in human brain microvascular endothelial cells for invasion. Microb Pathog 45:181–191CrossRefGoogle Scholar
  33. 33.
    Bruening G, Civerelo E, Kirkpatrick B, Gilchrist D (2002) Virulence analysis of the pierce’s disease agent Xylella fastidiosa. In: Athar-Tariq M, Oswalt S, Blincoe P, Esser T (eds). Proceedings Pierce’s Disease Research Symposium. San DiegoGoogle Scholar
  34. 34.
    Rott P, Fleites L, Marlow G, Royer M, Gabriel DW (2011) Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis. Mol Plant Microbe Interact 24:594–605CrossRefGoogle Scholar
  35. 35.
    Sambrook J, Maccallum P, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  36. 36.
    Cursino L, Galvani CD, Athinuwat D, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P (2011) Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa. Mol Plant Microbe Interact 24(10):1198–1206CrossRefGoogle Scholar
  37. 37.
    Athinuwat D, Prathuangwong S, Cursino L, Burr TJ (2009) Xanthomonas axonopodis pv. glycines soybean cultivar virulence specificity is determined by avrBs3 homolog avrXg1. Phytopathology 99(8):996–1004CrossRefGoogle Scholar
  38. 38.
    Kovach EM, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MSC, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefGoogle Scholar
  39. 39.
    Basham HG, Bateman DF (1975) Killing of plant cells by pectic enzymes: the lack of direct injurious interaction between pectic enzymes or their soluble reaction products and plant cells. Phytopathology 65:141–153CrossRefGoogle Scholar
  40. 40.
    Soriano M, Blanco A, Diaz P, Postor FL (2000) An unusual pectate lyase from a Bacillus sp. with high activity on pectin: cloning and characterization. Microbiology 14(6):89–95CrossRefGoogle Scholar
  41. 41.
    Tadakittisarn S, Songpim M, Vaithanomsat P (2009) Polygalacturonase and pectate lyase activity during ripening of Kluay Hom Thong fruit. Kasetsart J (Nat Sci) 43:267–274Google Scholar
  42. 42.
    Fu JF, Tseng YH (1990) Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microbiol 56:919–923Google Scholar
  43. 43.
    Lin HM, Tseng YH (1979) Exopolysaccharide synthesis in Xanthomonas oryzae. Proc Natl Sci Counc ROC 3:279–284Google Scholar
  44. 44.
    Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 295(1):129–134CrossRefGoogle Scholar
  45. 45.
    Chan JWYF, Goodwin PH (1993) The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv 17:489–508CrossRefGoogle Scholar
  46. 46.
    Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000CrossRefGoogle Scholar
  47. 47.
    Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20:1222–1230CrossRefGoogle Scholar
  48. 48.
    Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 185:3155–3166CrossRefGoogle Scholar
  49. 49.
    Kladsuwan L, Athinuwat D, Bogdanove AJ, Prathuangwong S (2017) AvrBs3-like genes and TAL effectors specific to race structure in Xanthomonas axonopodis pv. glycines. Thai J Agric Sci 50(3–4):121–145Google Scholar
  50. 50.
    Ojanen T, Helander IM, Haahtela K, Korhonen TK, Laakso T (1993) Outer membrane proteins and lipopolysaccharides in pathovars of Xanthomonas campestris. Appl Environ Microbiol 59:4143–4151Google Scholar
  51. 51.
    Chen YY, Wu C, Lin J, Weng S, Tseng Y (2010) Mutation of the gene encoding a major outer membrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity. Microbiol 156:2842–2854CrossRefGoogle Scholar
  52. 52.
    Chou FL, Chou HC, Lin YS, Yang BY, Lin NT, Weng SF, Tseng YH (1997) The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun 233:265–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Agricultural Technology, Faculty of Science and TechnologyThammasat UniversityPathumthaniThailand
  2. 2.School of ScienceMae Fah Luang UniversityChaing RaiThailand

Personalised recommendations