Simple Identification of Mycobacterial Species by Sequence-Specific Multiple Polymerase Chain Reactions

  • Nihan Unubol
  • Inci Tuney Kizilkaya
  • Sinem Oktem Okullu
  • Kaya Koksalan
  • Tanil KocagozEmail author


Several species of mycobacteria cause infections in humans. Species identification of clinical isolates of mycobacteria is very important for the decision of treatment and in choosing the appropriate treatment regimen. We have developed a multiplex PCR method that can identify practically all known species of mycobacteria, by determination of single-nucleotide differences at a total of 13 different polymorphic regions in the genes of rRNA and hsp65, in four PCR mixes. To achieve this goal, single-nucleotide differences in these polymorphic regions were used to divide mycobacterial species into two groups, than four, eight, etc., in an algorithmic manner. It was sufficient to reach single species level by evaluating 13 polymorphic regions. Evaluation of the multiplex PCR patterns by observable real-time electrophoresis (ORTE) simplified species identification. This new method may enable easy, rapid, and cost-effective identification of all species of mycobacteria.



This work was supported by TUBİTAK 107S014 (SBAG-3541) Identification of Mycobacterial Species by Sequence-Specific Polymerase Chain Reaction; for financial aid, I wish to thank TÜBİTAK.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bloom BR (1994) Tuberculosis Pathogenesis, Protection, and Control, ASM Press, WashingtonGoogle Scholar
  2. 2.
    Sezgin E, Van Natta M, Thorne J, Puhan M, Jabs D (2018) Secular trends in opportunistic infections, cancers and mortality in patients with AIDS during the era of modern combination antiretroviral therapy. HIV Med 19:411–419CrossRefGoogle Scholar
  3. 3.
    Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16:202CrossRefGoogle Scholar
  4. 4.
    Driesen M, Kondo Y, de Jong BC, Torrea G, Asnong S, Desmaretz C, Mostofa KSM, Tahseen S, Whitfield MG, Cirillo DM, Miotto P, Cabibbe AM, ve Rigouts L (2018) Evaluation of a novel line probe assay to detect resistance to pyrazinamide, a key drug used for tuberculosis treatment. Clin Microbiol Infect 24:60–64CrossRefGoogle Scholar
  5. 5.
    REPORT ET (2018) Handbook on tuberculosis laboratory diagnostic methods in the European UnionGoogle Scholar
  6. 6.
    Betty A, Forbes GSH, Melissa B, Miller SM, Novak M-C, Rowlinson M, Salfinger A, Somoskövi DM, Warshauer ML, Wilson (2018) Practice Guidelines for Clinical Microbiology Laboratories: Mycobacteria, ASM, WashingtonGoogle Scholar
  7. 7.
    PrasadMyneedua AKK (2018) Amplification of Hsp 65 gene and usage of restriction endonuclease for identification of non tuberculous rapid grower mycobacterium, Indian J Tuberc 65(1):57–62Google Scholar
  8. 8.
    Kim J-U, Ryu D-S, Cha C-H, ve Park S-H (2018) Paradigm for diagnosing mycobacterial disease: direct detection and differentiation of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in clinical specimens using multiplex real-time PCR. J Clin Pathol 71(9):774–780CrossRefGoogle Scholar
  9. 9.
    Ryan S, Sadda S, Schachat A, Wilkinson C, Schachat A, Hinton D, Wiedemann P, Wiedemann P (2013) Mycobacterial infections, retina. Elsevier, Amsterdam. ISBN: 9781455707379Google Scholar
  10. 10.
    Kocagöz T, Özkara EY,Ş, Kocagöz S, Hayran M, Sachedeva M, Chambers HF (1993) Detection of Mycobacterium tuberculosis in sputum samples by polymerase chain reaction using a simplified procedure, J Clin Microbiol 31(6):1435–1438Google Scholar
  11. 11.
    Mozioğlu E, Tamerler AM, Kocagöz C, ZT (2014) A simple guanidinium isothiocyanate method for bacterial genomic DNA isolation, Turk J Biol 38(1):125–129Google Scholar
  12. 12.
    Kocagöz T (2013) Real-time observable electrophoresis system, which does not require any kind of light filter, Patent, US2013112562 (A1)Google Scholar
  13. 13.
    Gilpin C, Korobitsyn A, Migliori GB, Raviglione MC, ve Weyer K (2018) The World Health Organization standards for tuberculosis care and management. Eur Respir J 51:1800098CrossRefGoogle Scholar
  14. 14.
    Fariz Nurwidya DH, Burhan E, Yunus F (2018) Molecular Diagnosis of Tuberculosis, Chonnam Medical JournaGoogle Scholar
  15. 15.
    Haworth CS, ve Floto RA (2017) Introducing the new BTS guideline: management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72:969–970CrossRefGoogle Scholar
  16. 16.
    Forbes BA, Hall GS, Miller MB, Novak SM, Rowlinson M-C, Salfinger M, Somoskövi A, Warshauer DM ve Wilson ML (2018) Practice guidelines for clinical microbiology laboratories: mycobacteria. Clin Microbiol Rev 31:e00038–e00017CrossRefGoogle Scholar
  17. 17.
    Balows A, Hausler WJ, Herrmann JR, Kenneth L, Isenberg HD, Shadomy HJ,, (1991). Manual of clinical microbiology, ASM Press, WashingtonGoogle Scholar
  18. 18.
    Butler WR, Cage G, Desmond E, Duffey PS, Floyd MM, Gross WM, Guthertz LS, Jost WM, Ramos LS, Silcox V, Thibert L, Warren N,, (1996). Standardized Method for HPLC Identification of Mycobacteria, U.S Department of Health and Human ServicesGoogle Scholar
  19. 19.
    Frazier KS, Hines ME,, (1993). Differentiation of mycobacteria on the basis of chemotype profiles by using matrix solid-phase dispersion and thin-layer chromatography Clin Microbiol Infect 31(3):610–614Google Scholar
  20. 20.
    Novakova MNVKS (2017) Identification of Mycobacterium Species by MALDI-TOF Mass Spectrometry, ed. Pulm Care Clin Med 37–42Google Scholar
  21. 21.
    Acosta FL, Ruiz Serrano MJ, Marín M, Kohl TA, Lozano N, Niemann S, Valerio M, Olmedo M, Pérez-Granda MJ, Pérez MP, Bouza E, Muñoz P, de Viedma DG (2018) Fast update of undetected Mycobacterium chimaera infections to reveal unsuspected cases, J Hosp Infect 100(4):451–455CrossRefGoogle Scholar
  22. 22.
    Olaru ID, Kranzer K, Perera N (2018) Turnaround time of whole genome sequencing for mycobacterial identification and drug susceptibility testing in routine practice, Clin Microbiol Infect 24(6):659–e5CrossRefGoogle Scholar
  23. 23.
    Broda A, Nikolayevskyy V, Casali N, Khan H, Bowker R, Blackwell G, Patel B, Hume J, Hussain W, ve Drobniewski F (2018) Experimental platform utilising melting curve technology for detection of mutations in Mycobacterium tuberculosis isolates. Eur J Clin Microbiol Infect Dis 37:1273–1279CrossRefGoogle Scholar
  24. 24.
    Tortone C, Zumárraga M, Gioffr A, ve Oriani D (2018) Utilization of molecular and conventional methods for the identification of nontuberculous mycobacteria isolated from different water sources. Int J Mycobacteriol 7:53–60CrossRefGoogle Scholar
  25. 25.
    Germer S, Higuchi R, Holland MJ (2000) High-Throughput SNP Allele-Frequency Determination in Pooled DNA Samples by Kinetic PCR, Genome Res 10(2):258–266CrossRefGoogle Scholar
  26. 26.
    Dae-Hoon L, Kyoung I, In-Taek HL, Jong-Kee K, Jong-Yoon C, Kyoung-Joong K, Yun-Jee K, (2007) Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene, Nucleic Acids Res 35(6):e40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nihan Unubol
    • 1
    • 2
  • Inci Tuney Kizilkaya
    • 3
  • Sinem Oktem Okullu
    • 1
    • 2
  • Kaya Koksalan
    • 4
  • Tanil Kocagoz
    • 1
    • 2
    Email author
  1. 1.Department of Medical Microbiology, Faculty of MedicineAcibadem Mehmet Ali Aydınlar UniversityIstanbulTurkey
  2. 2.Department of Medical Biotechnology, Institute of Health SciencesAcibadem Mehmet Ali Aydınlar UniversityIstanbulTurkey
  3. 3.Faculty of Sciences, Department of BiologyEge UniversityIzmirTurkey
  4. 4.Aziz Sancar Institute of Experimental MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations