Advertisement

New Insights of Ustilago maydis as Yeast Model for Genetic and Biotechnological Research: A Review

  • Dario R. Olicón-Hernández
  • Minerva G. Araiza-Villanueva
  • Juan P. Pardo
  • Elisabet Aranda
  • Guadalupe Guerra-SánchezEmail author
Review Article
  • 82 Downloads

Abstract

The basidiomycete Ustilago maydis is a biotrophic organism responsible for corn smut disease. In recent years, it has become one of the most promising models for biochemical and biotechnological research due to advantages, such as rapid growth, and easy genetic manipulation. In some aspects, this yeast is more similar to complex eukaryotes, such as humans, compared to standard laboratory yeast models. U. maydis can be employed as a tool to explore physiological processes with more versatility than other fungi. Previously, U. maydis was only considered as a phytopathogenic fungus, but different studies have shown its potential as a research model. Therefore, numerous promising studies have focused on deepening our understanding of the natural interactions, enzyme production, and biotechnological capacity. In this review, we explore general characteristics of U. maydis, both as pathogenic and “innocuous” basidiomycete. Additionally, a comparison with other yeast models focusing on genetic, biochemical, and biotechnological research are analyzed, to emphasize the versatility, dynamism, and novelty that U. maydis has as a research model. In this review, we highlight the applications of the yeast form of the fungus; however, since the filamentous form is also of relevance, it is addressed in the present work, as well.

Notes

Acknowledgements

Olicón-Hernández and Araiza-Villanueva want to thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for the postdoc fellowships (231581/454815) and Ph.D. fellowships (476544/404401) respectively. Thank you to Luis Alberto Parra, Miguel Ribes and Boletin FAMCAL for the help and permission for the use of the teliospores figure. Aranda E. thanks MINECO and FEDER funds (Ramón y Cajal contract RYC-2013-12481). This paper was also supported by CONACyT Grant 256520 and SIP-IPN (Secretaría de Investigación y Posgrado Instituto Politécnico Nacional) Grant 2018625 to Guerra-Sánchez and CONACyT Grant 254904 and PAPIIT: IN222117 of UNAM to Pardo Juan Pablo. This paper is part of the goals agreed of postdoc fellowship of Olicón-Hernández to CONACyT Mexico to consolidate the graduate program of CQB-IPN Mexico.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Juárez-Montiel M, Ruiloba de León S, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28(2):69–73.  https://doi.org/10.1016/j.riam.2011.01.001 Google Scholar
  2. 2.
    Abbas HK, Shier WT, Plasencia J, Weaver MA, Bellaloui N, Kotowicz JK, Butler AM, Accinelli C, de la Torre-Hernandez ME, Zablotowicz RM (2017) Mycotoxin contamination in corn smut (Ustilago maydis) galls in the field and in the commercial food products. Food Control 71:57–63.  https://doi.org/10.1016/j.foodcont.2016.06.006 Google Scholar
  3. 3.
    Valdez-Morales M, Barry K, Fahey GC, Domínguez J, de Mejia EG, Valverde ME, Paredes-López O (2010) Effect of maize genotype, developmental stage, and cooking process on the nutraceutical potential of huitlacoche (Ustilago maydis). Food Chem 119(2):689–697.  https://doi.org/10.1016/j.foodchem.2009.07.015 Google Scholar
  4. 4.
    Patel S (2016) Nutrition, safety, market status quo appraisal of emerging functional food corn smut (huitlacoche). Trends Food Sci Technol 57:93–102.  https://doi.org/10.1016/j.tifs.2016.09.006 Google Scholar
  5. 5.
    Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430.  https://doi.org/10.1111/j.1364-3703.2011.00783.x Google Scholar
  6. 6.
    Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5(2):83–92.  https://doi.org/10.1111/j.1364-3703.2004.00210.x Google Scholar
  7. 7.
    Cabrera-Ponce JL, León-Ramírez CG, Verver-Vargas A, Palma-Tirado L, Ruiz-Herrera J (2012) Metamorphosis of the basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps. Fungal Genet Biol 49(10):765–771.  https://doi.org/10.1016/j.fgb.2012.07.005 Google Scholar
  8. 8.
    Martínez-Soto D, Ruiz-Herrera J (2013) Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH. Fungal Genet Biol 58–59:116–125.  https://doi.org/10.1016/j.fgb.2013.08.011 Google Scholar
  9. 9.
    Horst RJ, Zeh C, Saur A, Sonnewald S, Sonnewald U, Voll LM (2012) The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous Growth. Eukaryot Cell 11(3):368–380.  https://doi.org/10.1128/ec.05191-11 Google Scholar
  10. 10.
    Rodríguez-Kessler M, Baeza-Montañez L, García-Pedrajas MD, Tapia-Moreno A, Gold S, Jiménez-Bremont JF, Ruiz-Herrera J (2012) Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis. Microbiol Res 167(5):270–282.  https://doi.org/10.1016/j.micres.2011.10.007 Google Scholar
  11. 11.
    Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M (2012) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36(1):59–77.  https://doi.org/10.1111/j.1574-6976.2011.00296.x Google Scholar
  12. 12.
    Morrison EN, Donaldson ME, Saville BJ (2012) Identification and analysis of genes expressed in the Ustilago maydis dikaryon: uncovering a novel class of pathogenesis genes. Can J Plant Pathol 34(3):417–435.  https://doi.org/10.1080/07060661.2012.697077 Google Scholar
  13. 13.
    Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97.  https://doi.org/10.1038/nature05248 Google Scholar
  14. 14.
    Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genet Biol 89:3–9.  https://doi.org/10.1016/j.fgb.2015.09.001 Google Scholar
  15. 15.
    Brundiek H, Saß S, Evitt A, Kourist R, Bornscheuer UT (2012) The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl Microbiol Biotechnol 94(1):141–150.  https://doi.org/10.1007/s00253-012-3903-9 Google Scholar
  16. 16.
    Nieter A, Haase-Aschoff P, Kelle S, Linke D, Krings U, Popper L, Berger RG (2015) A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis. Appl Environ Microbiol 81(5):1679–1688.  https://doi.org/10.1128/aem.02911-14 Google Scholar
  17. 17.
    Castruita-Domínguez JP, González-Hernández SE, Polaina J, Flores-Villavicencio LL, Alvarez-Vargas A, Flores-Martínez A, Ponce-Noyola P, Leal-Morales CA (2014) Analysis of a polygalacturonase gene of Ustilago maydis and characterization of the encoded enzyme. J Basic Microbiol 54(5):340–349.  https://doi.org/10.1002/jobm.201200606 Google Scholar
  18. 18.
    Geiser E, Wierckx N, Zimmermann M, Blank LM (2013) Identification of an endo-1,4-beta-xylanase of Ustilago maydis. BMC Biotechnol 13(1):59.  https://doi.org/10.1186/1472-6750-13-59 Google Scholar
  19. 19.
    Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11(1):43.  https://doi.org/10.1186/1475-2859-11-43 Google Scholar
  20. 20.
    Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66(2):525–533.  https://doi.org/10.1111/j.1365-2958.2007.05941.x Google Scholar
  21. 21.
    Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism—from genomics to biochemistry. Fungal Genet Biol 45:S88–S93.  https://doi.org/10.1016/j.fgb.2008.05.007 Google Scholar
  22. 22.
    Olicón-Hernández D, Uribe-Alvarez C, Uribe-Carvajal S, Pardo J, Guerra-Sánchez G (2017) Response of Ustilago maydis against the stress caused by three polycationic chitin derivatives. Molecules 22(12):1745Google Scholar
  23. 23.
    Steinberg G, Perez-Martin J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18(2):61–67.  https://doi.org/10.1016/j.tcb.2007.11.008 Google Scholar
  24. 24.
    Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445.  https://doi.org/10.1146/annurev-phyto-080508-081923 Google Scholar
  25. 25.
    Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42(4):1047–1063Google Scholar
  26. 26.
    Kämper J, Kahmann R, Bolker M, Ma LJ, Brefort T et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101.  https://doi.org/10.1038/nature05248 Google Scholar
  27. 27.
    Banuett F, Herskowitz I (1994) Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Exp Mycol 18:247–266Google Scholar
  28. 28.
    Kronstad JW, Leon SA (1990) The b mating-type locus of Ustilago maydis contains variable and constant regions. Gene dev 4:1384–1395Google Scholar
  29. 29.
    Castanheira S, Perez-Martin J (2015) Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest. Plant Signal Behav 10(4):e1001227.  https://doi.org/10.1080/15592324.2014.1001227 Google Scholar
  30. 30.
    Castanheira S, Mielnichuk N, Perez-Martin J (2014) Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis. Development 141(24):4817–4826.  https://doi.org/10.1242/dev.113415 Google Scholar
  31. 31.
    Doehlemann G, Wahl R, Vranes M, de Vries RP, Kämper J, Kahmann R (2008) Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165(1):29–40.  https://doi.org/10.1016/j.jplph.2007.05.016 Google Scholar
  32. 32.
    Banuett F, Herskowitz I (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:2965–2976Google Scholar
  33. 33.
    Regenfelder E, Spellig T, Hartmann A, Lauenstein S, Bölker M, Kahmann R (1997) G proteins in Ustilago maydis: transmission of multiple signals? EMBO J 16(8):1934–1942Google Scholar
  34. 34.
    Krüger J, Loubradou G, Wanner G, Regenfelder E, Feldbrügge M, Kahmann R (2000) Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol Plant Microbe Int 13(10):1034–1040Google Scholar
  35. 35.
    Müller P, Weinzierl G, Brachmann A, Feldbrugge M, Kahmann R (2003) Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2(6):1187–1199.  https://doi.org/10.1128/ec.2.6.1187-1199.2003 Google Scholar
  36. 36.
    Bölker M (2001) Ustilago maydis—a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401Google Scholar
  37. 37.
    Pérez-Martín J, Castillo-Lluva S, Sgarlata C, Flor-Parra I, Mielnichuk N, Torreblanca J, Carbó N (2006) Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Mol Genet Genomics 276(3):211–229.  https://doi.org/10.1007/s00438-006-0152-6 Google Scholar
  38. 38.
    Feldbrügge M, Zarnack K, Vollmeister E, Baumann S, Koepke J, König J, Münsterkötter M, Mannhaupt G (2008) The posttranscriptional machinery of Ustilago maydis. Fungal Genet Biol 45:S40–S46.  https://doi.org/10.1016/j.fgb.2008.03.013 Google Scholar
  39. 39.
    McCotter SW, Horianopoulos LC, Kronstad JW (2016) Regulation of the fungal secretome. Curr Genet 62(3):533–545.  https://doi.org/10.1007/s00294-016-0578-2 Google Scholar
  40. 40.
    Yu EY, Kojic M, Holloman WK, Lue NF (2013) Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres. DNA Repair 12(7):472–479.  https://doi.org/10.1016/j.dnarep.2013.04.027 Google Scholar
  41. 41.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR–Cas9 system. Nat Protoc 8:2281.  https://doi.org/10.1038/nprot.2013.143 Google Scholar
  42. 42.
    Terfrüchte M, Reindl M, Jankowski S, Sarkari P, Feldbrügge M, Schipper K (2017) Applying unconventional secretion in Ustilago maydis for the export of functional nanobodies. Int J Mol Sci 18(5):937Google Scholar
  43. 43.
    Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K (2012) Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol 161(2):80–91.  https://doi.org/10.1016/j.jbiotec.2012.03.004 Google Scholar
  44. 44.
    García M, Esteve-Zarzoso B, Arroyo T (2016) Non-Saccharomyces yeasts: biotechnological role for wine production grape and wine biotechnology. InTech  https://doi.org/10.5772/64957 Google Scholar
  45. 45.
    Saavedra E, Ramos-Casillas LE, Marín-Hernández A, Moreno-Sánchez R, Guerra-Sánchez G (2008) Glycolysis in Ustilago maydis. FEMS Yeast Res 8(8):1313–1323.  https://doi.org/10.1111/j.1567-1364.2008.00437.x Google Scholar
  46. 46.
    Bosch K, Frantzeskakis L, Vranes M, Kämper J, Schipper K, Gohre V (2016) Genetic manipulation of the plant pathogen Ustilago maydis to study fungal biology and plant microbe interactions. J Vis Exp  https://doi.org/10.3791/54522 Google Scholar
  47. 47.
    Wach A (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265Google Scholar
  48. 48.
    Wach A, Brachat A, Philippsen RP P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808Google Scholar
  49. 49.
    Kämper J (2004) A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Genomics 271(1):103–110.  https://doi.org/10.1007/s00438-003-0962-8 Google Scholar
  50. 50.
    Terfrüchte M, Joehnk B, Fajardo-Somera R, Braus GH, Riquelme M, Schipper K, Feldbrugge M (2014) Establishing a versatile golden gate cloning system for genetic engineering in fungi. Fungal Genet Biol 62:1–10.  https://doi.org/10.1016/j.fgb.2013.10.012 Google Scholar
  51. 51.
    Ho S, Hunt H, Horton RM, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59Google Scholar
  52. 52.
    Horton R, Hunt H, Ho S, Pullen J, Pease L (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68Google Scholar
  53. 53.
    Kämper J (2004) A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics 271(1):103–110.  https://doi.org/10.1007/s00438-003-0962-8 Google Scholar
  54. 54.
    Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3(11):e3647.  https://doi.org/10.1371/journal.pone.0003647 Google Scholar
  55. 55.
    Brachmann A, Konig J, Julius C, Feldbrugge M (2004) A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272(2):216–226.  https://doi.org/10.1007/s00438-004-1047-z Google Scholar
  56. 56.
    Zhou L, Obhof T, Schneider K, Feldbrügge M, Nienhaus GU, Kämper J (2018) Cytoplasmic transport machinery of the SPF27 homologue Num1 in Ustilago maydis. Sci Rep 8(1):3611.  https://doi.org/10.1038/s41598-018-21628-y Google Scholar
  57. 57.
    Cárdenas-Monroy CA, Pohlmann T, Piñón-Zárate G, Matus-Ortega G, Guerra G, Feldbrügge M, Pardo JP (2017) The mitochondrial alternative oxidase Aox1 is needed to cope with respiratory stress but dispensable for pathogenic development in Ustilago maydis. PLoS ONE 12(3):e0173389.  https://doi.org/10.1371/journal.pone.0173389 Google Scholar
  58. 58.
    Zambanini T, Hartmann SK, Schmitz LM, Büttner L, Hosseinpour Tehrani H, Geiser E, Beudels M, Venc D, Wandrey G, Büchs J, Schwarzländer M, Blank LM, Wierckx N (2017) Promoters from the itaconate cluster of Ustilago maydis are induced by nitrogen depletion. Fungal Biol Biotechnol 4(1):11.  https://doi.org/10.1186/s40694-017-0040-3 Google Scholar
  59. 59.
    Lanver D, Müller AN, Happel P, Schweizer G, Haas FB, Franitza M, Pellegrin C, Reissmann S, Altmüller J, Rensing SA, Kahmann R (2018) The biotrophic development of Ustilago maydis studied by RNA-Seq analysis. Plant Cell 30(2):300–323.  https://doi.org/10.1105/tpc.17.00764 Google Scholar
  60. 60.
    Jiménez-Becerril MF, Hernández-Delgado S, Solís-Oba M, González Prieto JM (2018) Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico. Mitochondr DNA Part A 29(1):1–8.  https://doi.org/10.1080/24701394.2016.1229776 Google Scholar
  61. 61.
    Geiser E, Wiebach V, Wierckx N, Blank LM (2014) Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol Biotechnol 1(1):2.  https://doi.org/10.1186/s40694-014-0002-y Google Scholar
  62. 62.
    Olicón-Hernández DR, Hernández-Lauzardo AN, Pardo JP, Peña A, Velázquez-del Valle MG, Guerra-Sánchez G (2015) Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis. Int J Biol Macromol 79:654–660.  https://doi.org/10.1016/j.ijbiomac.2015.05.057 Google Scholar
  63. 63.
    Serrano-Gómez J, Olguín MT (2015) Separation of Cr(VI) from aqueous solutions by adsorption on the microfungus Ustilago maydis. Int J Environ Sci Technol 12(8):2559–2566.  https://doi.org/10.1007/s13762-014-0665-1 Google Scholar
  64. 64.
    Sargın İ, Arslan G, Kaya M (2016) Microfungal spores (Ustilago maydis and U. digitariae) immobilised chitosan microcapsules for heavy metal removal. Carbohyd Polym 138:201–209.  https://doi.org/10.1016/j.carbpol.2015.11.065 Google Scholar
  65. 65.
    Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M (2016) Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 9(1):116–126.  https://doi.org/10.1111/1751-7915.12329 Google Scholar
  66. 66.
    Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, Klinner U, Blank LM (2014) Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 14(2):129–134.  https://doi.org/10.1002/elsc.201300043 Google Scholar
  67. 67.
    Geiser E, Przybilla SK, Engel M, Kleineberg W, Büttner L, Sarikaya E, Hartog TD, Klankermayer J, Leitner W, Bölker M, Blank LM, Wierckx N (2016) Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng 38:427–435.  https://doi.org/10.1016/j.ymben.2016.10.006 Google Scholar
  68. 68.
    Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45(14):1522–1554.  https://doi.org/10.1080/10643389.2014.955631 Google Scholar
  69. 69.
    Yang X-L, Awakawa T, Wakimoto T, Abe I (2013) Induced production of the novel glycolipid ustilagic acid C in the plant pathogen Ustilago maydis. Tetrahedron Lett 54(28):3655–3657.  https://doi.org/10.1016/j.tetlet.2013.04.131 Google Scholar
  70. 70.
    Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72(8):5469–5477.  https://doi.org/10.1128/aem.00506-06 Google Scholar
  71. 71.
    Teichmann B, Liu L, Schink KO, Bölker M (2010) Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1. Appl Environ Microbiol 76(8):2633–2640.  https://doi.org/10.1128/aem.02211-09 Google Scholar
  72. 72.
    Zavala-Moreno A, Arreguin-Espinosa R, Pardo JP, Romero-Aguilar L, Guerra-Sánchez G (2014) Nitrogen source affects glycolipid production and lipid accumulation in the phytopathogen fungus Ustilago maydis. Adv Microbiol 4(13):934Google Scholar
  73. 73.
    Teichmann B, Liu L, Schink KO, Bölker M (2010) The C2H2 zinc finger transcription factor Rua1 activates the ustilagic acid biosynthesis gene cluster in Ustilago maydis. Appl Environ Microbiol 76(8):2633–2640.  https://doi.org/10.1128/AEM.02211-09 Google Scholar
  74. 74.
    Liu Y, Koh CMJ, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol 102(4):3927–3933.  https://doi.org/10.1016/j.biortech.2010.11.115 Google Scholar
  75. 75.
    Geiser E, Reindl M, Blank LM, Feldbrügge M, Wierckx N, Schipper K (2016) Activating intrinsic carbohydrate-active enzymes of the smut fungus Ustilago maydis for the degradation of plant cell wall components. Appl Environ Microbiol 82(17):5174–5185.  https://doi.org/10.1128/aem.00713-16 Google Scholar
  76. 76.
    Buerth C, Kovacic F, Stock J, Terfrüchte M, Wilhelm S, Jaeger K-E, Feldbrügge M, Schipper K, Ernst JF, Tielker D (2014) Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Appl Microbiol Biotechnol 98(11):4963–4973.  https://doi.org/10.1007/s00253-013-5493-6 Google Scholar
  77. 77.
    Aguilar LR, Pardo JP, Lomelí MM, Bocardo OIL, Juárez Oropeza MA, Guerra Sánchez G (2017) Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch Microbiol 199(8):1195–1209.  https://doi.org/10.1007/s00203-017-1388-8 Google Scholar
  78. 78.
    Geiser E, Reindl M, Blank LM, Feldbrügge M, Wierckx N, Schipper K (2016) Activating intrinsic carbohydrate-active enzymes of the smut fungus Ustilago maydis for the degradation of plant cell wall components. Appl Environ Microb 82 (17):5174–5185.  https://doi.org/10.1128/AEM.00713-16 Google Scholar
  79. 79.
    Morrison EN, Emery RJN, Saville BJ (2017) Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol 66(5):726–742.  https://doi.org/10.1111/ppa.12629 doiGoogle Scholar
  80. 80.
    Terfrüchte M, Wewetzer S, Sarkari P, Stollewerk D, Franz-Wachtel M, Macek B, Schlepütz T, Feldbrügge M, Büchs J, Schipper K (2018) Tackling destructive proteolysis of unconventionally secreted heterologous proteins in Ustilago maydis. J Biotechnol 284:37–51.  https://doi.org/10.1016/j.jbiotec.2018.07.035 Google Scholar
  81. 81.
    Zander S, Müntjes K, Feldbrügge M (2018) RNA live imaging in the model microorganism Ustilago maydis. In: Gaspar I (ed) RNA detection: methods and protocols. Springer, New York, pp 319–335.  https://doi.org/10.1007/978-1-4939-7213-5_21 Google Scholar
  82. 82.
    Schuler D, Höll C, Grün N, Ulrich J, Dillner B, Klebl F, Ammon A, Voll LM, Kämper J (2018) Galactose metabolism and toxicity in Ustilago maydis. Fungal Genet Biol 114:42–52.  https://doi.org/10.1016/j.fgb.2018.03.005 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dario R. Olicón-Hernández
    • 1
    • 2
  • Minerva G. Araiza-Villanueva
    • 1
  • Juan P. Pardo
    • 3
  • Elisabet Aranda
    • 2
  • Guadalupe Guerra-Sánchez
    • 1
    Email author
  1. 1.Instituto Politécnico NacionalEscuela Nacional de Ciencias BiológicasCiudad de MéxicoMexico
  2. 2.Instituto Universitario del AguaUniversidad de GranadaGranadaSpain
  3. 3.Facultad de Medicina, Departamento de BioquímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations