Advertisement

Current Microbiology

, Volume 76, Issue 3, pp 320–328 | Cite as

PsrA Regulator Connects Cell Physiology and Class 1 Integron Integrase Gene Expression Through the Regulation of lexA Gene Expression in Pseudomonas spp.

  • Katarina D. Novovic
  • Milka J. Malesevic
  • Brankica V. Filipic
  • Nemanja L. Mirkovic
  • Marija S. Miljkovic
  • Milan O. Kojic
  • Branko U. JovčićEmail author
Article

Abstract

Pseudomonas aeruginosa, which is a clinically important representative of Pseudomonas spp., has been recognized as causative agent of severe nosocomial infections worldwide. An increase in antibiotic resistance of P. aeruginosa clinical strains could be attributed to their capacity to acquire resistance through mobile genetic elements such as mobile integrons that are present in one-half of multidrug-resistant P. aeruginosa strains. Mobile class 1 integrons are recognized as genetic elements involved in the rapid dissemination of multiple genes encoding for antibiotic resistance. The LexA protein is a major repressor of integrase transcription, but differences in transcription regulation among bacterial species have also been noted. In this study, the promoter activity of class 1 integron integrase gene (intI1) and its variant lacking the LexA binding site in Pseudomonas putida WCS358 wild type, ΔrpoS and ΔpsrA was analysed. The results show that the activity of the intI1 gene promoter decreased in the rpoS and psrA mutants in the stationary phase of growth compared to the wild type, which indicates the role of RpoS and PsrA proteins in the positive regulation of integrase transcription. Additionally, it was determined that the activity of the lexA gene promoter decreased in ΔrpoS and ΔpsrA, and thus, we propose that PsrA indirectly regulates the intI1 gene promoter activity through regulation of lexA gene expression in co-operation with some additional regulators. In this study, intI1 gene expression was shown to be controlled by two major stress response (SOS and RpoS) regulons, which indicates that integrase has evolved to use both systems to sense the cell status.

Notes

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [Grant No. 173019].

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Araújo D, Shteinberg M, Aliberti S, Goeminne PC, Hill AT, Fardon TC, Obradovic D, Stone G, Trautmann M, Davis A, Dimakou K, Polverino E, De Soyza A, McDonnell MJ, Chalmers JD (2018) The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis. Eur Resp J 51:1701953.  https://doi.org/10.1183/13993003.01953-2017 CrossRefGoogle Scholar
  2. 2.
    Baharoglu Z, Krin E, Mazel D (2012) Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase. J Bacteriol 194:1659–1667.  https://doi.org/10.1128/JB.05982-11 CrossRefGoogle Scholar
  3. 3.
    Beriş F, Akyildiz E, Düzgün A, Say Coşkun US, Sandalli C, Çopur Çiçek A (2016) A Novel integron gene cassette harboring VIM-38 metallo-β-lactamase in a clinical Pseudomonas aeruginosa isolate. Ann Lab Med 36(6):611–613.  https://doi.org/10.3343/alm.2016.36.6.611 CrossRefGoogle Scholar
  4. 4.
    Cagle CA, Shearer JE, Summers AO (2011) Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins. Microbiology 157:2841–2853.  https://doi.org/10.1099/mic.0.046987-0 CrossRefGoogle Scholar
  5. 5.
    Cambray G, Sanchez-Alberola N, Campoy S, Guerin E, Da Re S, González-Zorn B, Ploy MC, Barbe J, Mazel D, Erill I (2011) Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mobile DNA 2:6.  https://doi.org/10.1186/1759-8753-2-6 CrossRefGoogle Scholar
  6. 6.
    Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK (2007) PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. App Environ Microbiol 73(11):3684–3694.  https://doi.org/10.1128/AEM.02445-06 CrossRefGoogle Scholar
  7. 7.
    Chen D, Yang L, Peters BM, Liu J, Li L, Li B, Xu Z, Shirtliff ME (2018) Complete sequence of a novel multidrug-resistant Pseudomonas putida strain carrying two copies of qnrVC. Microb Drug Resist.  https://doi.org/10.1089/mdr.2018.0104 Google Scholar
  8. 8.
    Chin-A-Woeng TF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18(3):244–253.  https://doi.org/10.1094/MPMI-18-0244 CrossRefGoogle Scholar
  9. 9.
    Dapa T, Fleurier S, Bredeche M-F, Matic I (2017) The SOS and RpoS regulons contribute to bacterial cell robustness to genotoxic stress by synergistically regulating DNA Polymerase Pol II. Genetics 206(3):1349–1360.  https://doi.org/10.1534/genetics.116.199471 CrossRefGoogle Scholar
  10. 10.
    del Barrio-Tofiño E, López-Causapé C, Cabot G, Rivera A, Benito N, Segura C, Milagro Montero M, Sorlí L, Tubau F, Gómez-Zorrilla S, Tormo N, Durá-Navarro R, Viedma E, Resino-Foz E, Fernández-Martínez M, González-Rico C, Alejo-Cancho I, Martínez JA, Labayru-Echverria C, Dueñas C, Ayestarán I, Zamorano L, Martinez-Martinez L, Horcajada JP, Oliver A (2017) Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain. Antimicrob Agents Chemother 61(11):E01589–E01517.  https://doi.org/10.1128/AAC.01589-17 Google Scholar
  11. 11.
    Deng Y, Liu J, Peters B, Chen D, Yu G, Xu Z, Shirtliff M (2015) Antimicrobial resistance investigation on Staphylococcus strains in a local hospital in Southern China, 2001–2010. Microb Drug Resist 21:102–104.  https://doi.org/10.1089/mdr.2014.0117 CrossRefGoogle Scholar
  12. 12.
    Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652.  https://doi.org/10.1073/pnas.76.4.1648 CrossRefGoogle Scholar
  13. 13.
    Fonseca EL, Vieira VV, Cipriano R, Vicente AC (2005) Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in Amazon region, Brazil. FEMS Immunol Med Microbiol 44(3):303–309.  https://doi.org/10.1016/j.femsim.2005.01.004 CrossRefGoogle Scholar
  14. 14.
    Geels FP, Schippers B (1983) Reduction in yield depression in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. J Phytopathol 108:207–221.  https://doi.org/10.1073/pnas.76.4.1648 CrossRefGoogle Scholar
  15. 15.
    Gross M (2013) Antibiotics in crisis. Curr Biol 23(24):R1063–R1065.  https://doi.org/10.1016/j.cub.2013.11.057 CrossRefGoogle Scholar
  16. 16.
    Hanahan D (1983) Studies of transformation of Escherichia coli with plasmids. J Mol Biol 166::557–580.  https://doi.org/10.1016/S0022-2836(83)80284-8 CrossRefGoogle Scholar
  17. 17.
    Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σs (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66(3):373–395.  https://doi.org/10.1128/MMBR.66.3.373-395.2002 CrossRefGoogle Scholar
  18. 18.
    Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, Kojic M (2011) Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates in Serbia. Antimicrob Agents Chemother 55(8):3929–3931.  https://doi.org/10.1128/AAC.00226-11 CrossRefGoogle Scholar
  19. 19.
    Kang Y, Nguyen DT, Son MS, Hoang TT (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology 154:1584–1598.  https://doi.org/10.1099/mic.0.2008/018135-0 CrossRefGoogle Scholar
  20. 20.
    Kojic M, Aguilar C, Venturi V (2002) TetR family member PsrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol 184(8):2324–2330.  https://doi.org/10.1128/JB.184.8.2324-2330.2002 CrossRefGoogle Scholar
  21. 21.
    Kojic M, Degrassi G, Venturi V (1999) Cloning and characterisation of the rpoS gene from plant growth-promoting Pseudomonas putida WCS358: RpoS is not involved in siderophore and homoserine lactone production. Biochim Biophys Acta 1489:413–420.  https://doi.org/10.1016/S0167-4781(99)00210-9 CrossRefGoogle Scholar
  22. 22.
    Kojic M, Jovcic B, Vindigni A, Odreman F, Venturi V (2005) Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa. FEMS Microbiol Lett 246:175–181.  https://doi.org/10.1016/j.femsle.2005.04.003 CrossRefGoogle Scholar
  23. 23.
    Kojic M, Venturi V (2001) Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol 183:3712–3720.  https://doi.org/10.1128/JB.183.12.3712-3720.2001 CrossRefGoogle Scholar
  24. 24.
    Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M, Kohara T, Kashiyama S, Hayashida S, Harino T, Tsuji T, Itaha H, Gotoh N, Matsubara A, Usui T, Sugai M (2009) Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother 64(1):46–51.  https://doi.org/10.1093/jac/dkp142 CrossRefGoogle Scholar
  25. 25.
    Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 74(4):621–641.  https://doi.org/10.1128/MMBR.00027-10 CrossRefGoogle Scholar
  26. 26.
    Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34(5):634–640.  https://doi.org/10.1086/338782 CrossRefGoogle Scholar
  27. 27.
    Liu J, Yang L, Chen D, Peters BM, Li L, Li B, Xu Z, Shirtliff ME (2018) Complete sequence of pBM413, a novel multidrug resistance megaplasmid carrying qnrVC6 and bla IMP–45 from Pseudomonas aeruginosa. Int J Antimicrob Agents 51(1):145–150.  https://doi.org/10.1016/j.ijantimicag.2017.09.008 CrossRefGoogle Scholar
  28. 28.
    Liu J, Yang L, Li L, Li B, Chen D, Xu Z (2018) Comparative genomic analyses of two novel qnrVC6 carrying multidrug-resistant Pseudomonas spp. strains. Microb Pathog 123:269–274.  https://doi.org/10.1016/j.micpath.2018.07.026 CrossRefGoogle Scholar
  29. 29.
    Liu J, Li L, Peters BM, Li B, Chen D, Xu Z, Shirtliff ME (2018) Complete genomic analysis of multidrug-resistance Pseudomonas aeruginosa Guangzhou-Pae617, the host of megaplasmid pBM413. Microb Pathog 117:265–269.  https://doi.org/10.1016/j.micpath.2018.02.049 CrossRefGoogle Scholar
  30. 30.
    MacDonald D, Demarre G, Bouvier M, Mazel D, Gopaul DN (2006) Structural basis for broad DNA-specificity in integron recombination. Nature 440:1157–1162.  https://doi.org/10.1038/nature04643 CrossRefGoogle Scholar
  31. 31.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281.  https://doi.org/10.1111/j.1469-0691.2011.03570.x CrossRefGoogle Scholar
  32. 32.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  33. 33.
    Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A (1998) Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406.  https://doi.org/10.1093/nar/26.2.391 CrossRefGoogle Scholar
  34. 34.
    Pagani L, Colinon C, Migliavacca R, Labonia M, Docquier JD, Nucleo E, Spalla M, Li Bergoli M, Rossolini GM (2005) Nosocomial outbreak caused by multidrug-resistant Pseudomonas aeruginosa producing IMP-13 metallo-βJ. Clin Microbiol 43(8):3824–3828.  https://doi.org/10.1128/JCM.43.8.3824-3828.2005 CrossRefGoogle Scholar
  35. 35.
    Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32(1):38–55.  https://doi.org/10.1111/j.1574-6976.2007.00092.x CrossRefGoogle Scholar
  36. 36.
    Spaink HP, Okker RJH, Wijffelmann CA, Pees E, Lugtenberg BJJ (1987) Promoter in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39.  https://doi.org/10.1007/BF00017984 CrossRefGoogle Scholar
  37. 37.
    Spellberg B, Gilbert DN (2014) The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(2):S71–S75.  https://doi.org/10.1093/cid/ciu392 CrossRefGoogle Scholar
  38. 38.
    Stachel SE, An G, Flores C, Nester EW (1985) A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression of. Agrobacterium tumefaciens EMBO J 4:891–898.  https://doi.org/10.1002/j.1460-2075.1985.tb03715.x CrossRefGoogle Scholar
  39. 39.
    Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683.  https://doi.org/10.1111/j.1365-2958.1989.tb00153.x CrossRefGoogle Scholar
  40. 40.
    Strugeon E, Tilloy V, Ploy MC, Da Re S (2016) The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. MBio 7(4):e00868–e00816.  https://doi.org/10.1128/mBio.00868-16 CrossRefGoogle Scholar
  41. 41.
    Sundström L (1998) The potential of integrons and connected programmed rearrangements for mediating horizontal gene transfer. APMIS 84:37–42.  https://doi.org/10.1111/j.1600-0463.1998.tb05646.x CrossRefGoogle Scholar
  42. 42.
    Tsakris A, Poulou A, Kristo I, Pittaras T, Spanakis N, Pournaras S, Markou F (2009) Large dissemination of VIM-2-metallo-βPseudomonas aeruginosa strains causing health care-associated community-onset infections. J Clin Microbiol 47:3524–3529.  https://doi.org/10.1128/JCM.01099-09 CrossRefGoogle Scholar
  43. 43.
    Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93Google Scholar
  44. 44.
    Wang Y, Wang X, Schwarz S, Zhang R, Lei L, Liu X, Lin D, Shen J (2014) IMP-45-producing multidrug-resistant Pseudomonas aeruginosa of canine origin. J Antimicrob Chemother 69(9):2579–2581.  https://doi.org/10.1093/jac/dku133 CrossRefGoogle Scholar
  45. 45.
    Wells G, Palethorpe S, Pesci EC (2017) PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506. PLoS ONE 12(12):e0189331.  https://doi.org/10.1371/journal.pone.0189331 CrossRefGoogle Scholar
  46. 46.
    Wu X, Liu J, Zhang W, Zhang L (2012) Multiple-level regulation of 2,4-diacetylphloroglucinol production by the sigma regulator PsrA in Pseudomonas fluorescens 2P24. PLoS One 7(11):e50149.  https://doi.org/10.1371/journal.pone.0050149 CrossRefGoogle Scholar
  47. 47.
    Xie J, Yang L, Peters BM, Chen L, Chen D, Li B, Li L, Yu G, Xu Z, Shirtliff ME (2017) A 16-year retrospective surveillance report on the pathogenic features and antimicrobial susceptibility of Pseudomonas aeruginosa isolates from FAHJU in Guangzhou representative of Southern China. Microb Pathog 110:37–41.  https://doi.org/10.1016/j.micpath.2017.06.018 CrossRefGoogle Scholar
  48. 48.
    Xu Z, Li L, Shirtliff ME, Alam MJ, Yamasaki S, Shi L (2009) Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. J Clin Microbiol 47(1):230–234.  https://doi.org/10.1128/JCM.02027-08 CrossRefGoogle Scholar
  49. 49.
    Yayan J, Ghebremedhin B, Rasche K (2015) Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS ONE 10(10):e0139836.  https://doi.org/10.1371/journal.pone.0139836 CrossRefGoogle Scholar
  50. 50.
    Yu G, Wen W, Peters B, Liu J, Ye C, Che Y, Liu J, Cao K, Xu Z, Shirtliff ME (2016) First report of novel genetic array aacA4-bla IMP–25-oxa 30-catB3 and identification of novel metallo-β-lactamase gene bla IMP25: a retrospective study of antibiotic resistance surveillance on Psuedomonas aeruginosa in Guangzhou of South China, 2003–2007. Microb Pathog 95:62–67.  https://doi.org/10.1016/j.micpath.2016.02.021 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Katarina D. Novovic
    • 1
  • Milka J. Malesevic
    • 1
  • Brankica V. Filipic
    • 1
    • 2
  • Nemanja L. Mirkovic
    • 1
  • Marija S. Miljkovic
    • 1
  • Milan O. Kojic
    • 1
  • Branko U. Jovčić
    • 1
    • 3
    Email author
  1. 1.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of PharmacyUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations