Current Microbiology

, Volume 76, Issue 2, pp 207–212 | Cite as

Draft genome Sequence of Phosphate-Accumulating Bacterium Acinetobacter tandoii SC36 from a Mangrove Wetland Ecosystem Provides Insights into Elements of Phosphorus Removal

  • Wenfei Zhang
  • Jianru Gong
  • Siyu Wu
  • Haoneng Yin
  • Yinghong Jin
  • Hongping Wu
  • Peng Li
  • Ruiping WangEmail author


Acinetobacter tandoii SC36 was isolated from a mangrove wetland ecosystem in the Dongzhaigang Nature Reserve in Haikou, China. This bacterium was found to have a capacity for polyphosphate accumulation. To provide insight into its phosphorus metabolism and facilitate its application in phosphorus removal, we developed a draft genome of this strain. KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation revealed three ppk genes and several phosphate metabolic related pathways in the genome of SC36. These genome data of Acinetobacter tandoii SC36 will facilitate elucidation of the mechanism of polyphosphate accumulation.



This study was financially supported by grants from the Natural Science Foundation of China (41366001) and the Education Bureau of Hainan Province (Hnky2017ZD-13). We thank Hainan Dongzhaigang Nature Reserve Authority for assistance with soil and water sample collection.

Compliance with Ethical Standards

Conflict of interest

The authors have declared that there was no conflict of interest.

Supplementary material

284_2018_1611_MOESM1_ESM.xls (876 kb)
Supplementary material 1 (XLS 876 KB)
284_2018_1611_MOESM2_ESM.pdf (427 kb)
Supplementary material 2 (PDF 426 KB)


  1. 1.
    Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27(1):99–127CrossRefGoogle Scholar
  2. 2.
    Nakamura K, Masuda K, Mikami E (1991) Isolation of a new type of polyphosphate accumulating bacterium and its phosphate removal characteristics. J Ferment Bioeng 71(4):258–263. CrossRefGoogle Scholar
  3. 3.
    Doughari HJ, Ndakidemi PA, Human IS, Benade S (2011) The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 26(2):101–112CrossRefGoogle Scholar
  4. 4.
    Tinsley CR, Manjula BN, Gotschlich EC (1993) Purification and characterization of polyphosphate kinase from Neisseria meningitidis. Infect Immun 61(9):3703–3710Google Scholar
  5. 5.
    Morohoshi T, Yamashita T, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kuroda A (2003) A method for screening polyphosphate-accumulating mutants which remove phosphate efficiently from synthetic wastewater. J Biosci Bioeng 95(6):637–640CrossRefGoogle Scholar
  6. 6.
    Bond PL, Erhart R, Wagner M, Keller J, Blackall LL (1999) Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65(9):4077–4084Google Scholar
  7. 7.
    Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272. CrossRefGoogle Scholar
  8. 8.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679. CrossRefGoogle Scholar
  9. 9.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964CrossRefGoogle Scholar
  10. 10.
    Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41. CrossRefGoogle Scholar
  11. 11.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. CrossRefGoogle Scholar
  12. 12.
    Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731. CrossRefGoogle Scholar
  13. 13.
    Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. CrossRefGoogle Scholar
  14. 14.
    Minkin I, Patel A, Kolmogorov M, Vyahhi N, Pham S (2013) Sibelia: a scalable and comprehensive synteny block generation tool for closely related microbial genomes. In: International workshop on algorithms in bioinformatics. Springer, Berlin, pp 215–229Google Scholar
  15. 15.
    Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. CrossRefGoogle Scholar
  16. 16.
    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203. CrossRefGoogle Scholar
  17. 17.
    Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280(2):1448–1456. CrossRefGoogle Scholar
  18. 18.
    Bisicchia P, Lioliou E, Noone D, Salzberg LI, Botella E, Hubner S, Devine KM (2010) Peptidoglycan metabolism is controlled by the WalRK (YycFG) and PhoPR two-component systems in phosphate-limited Bacillus subtilis cells. Mol Microbiol 75(4):972–989. CrossRefGoogle Scholar
  19. 19.
    Creager-Allen RL, Silversmith RE, Bourret RB (2013) A link between dimerization and autophosphorylation of the response regulator PhoB. J Biol Chem 288(30):21755–21769. CrossRefGoogle Scholar
  20. 20.
    Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53(4):450–490Google Scholar
  21. 21.
    Bhutkar A, Russo S, Smith TF, Gelbart WM (2006) Techniques for multi-genome synteny analysis to overcome assembly limitations. Genome Inform 17(2):152–161Google Scholar
  22. 22.
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. CrossRefGoogle Scholar
  23. 23.
    Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(Pt 2):346–351. CrossRefGoogle Scholar
  24. 24.
    Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15(6):589–594. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenfei Zhang
    • 1
  • Jianru Gong
    • 1
  • Siyu Wu
    • 1
  • Haoneng Yin
    • 1
  • Yinghong Jin
    • 1
  • Hongping Wu
    • 1
  • Peng Li
    • 1
  • Ruiping Wang
    • 1
    Email author
  1. 1.Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina

Personalised recommendations