Advertisement

Flavobacterium sharifuzzamanii sp. nov., Isolated from the Sediments of the East China Sea

  • Sanjit C. Debnath
  • Can Chen
  • Shu-Xia Liu
  • Ya-Nan Di
  • Dao-Qiong Zheng
  • Xin-Yang Li
  • Xue-Wei Xu
  • Jin-Zhong XuEmail author
  • Pin-Mei WangEmail author
Article
  • 125 Downloads

Abstract

A novel bacterial strain A7.6T was isolated from the sediments collected near the Zhairuo Island located in the East China Sea and characterized using a polyphasic approach. Cells were Gram-stain-negative, rod-shaped, non-spore forming, non-flagellated but motile by gliding. The strain was aerobic, positive for oxidase and catalase activities. The strain can grow at 4–35 °C, pH 5.5–9.0, and 0–3% (w/v) NaCl concentration. The major polar lipid was phosphatidylethanolamine, the predominant fatty acids (> 10%) were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The genomic G+C content was 33.6 mol% and the major respiratory quinone was menaquinone 6. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A7.6T belonged to the genus Flavobacterium and was closely related to Flavobacterium tistrianum GB 56.1T (98.4% similarity), F. nitrogenifigens NXU-44T (98.4%), F. ginsenosidimutans THG 01T (98.0%) and F. anhuiense D3T (97.7%). Average nucleotide identities and digital DNA–DNA hybridizations values for genomes ranged from 75.9 to 91.4% and 21.4 to 43.9% between strain A7.6T and its closest phylogenetic neighbors. The polyphasic characterization indicated that strain A7.6T represented a novel species of the genus Flavobacterium, for which the name Flavobacterium sharifuzzamanii is proposed. The type strain is A7.6T (= KCTC 62405T = MCCC 1K03485T). The NCBI GenBank accession number for the 16S rRNA gene of A7.6T is MH396692, and for the genome sequence is QJGZ00000000. The digital protologue database (DPD) Taxon Number is TA00643.

Abbreviations

PE

Phosphatidylethanolamine

ANI

Average nucleotide identity

dDDH

Digital DNA–DNA hybridization

Notes

Acknowledgements

The work was supported by Natural Science Foundation of Zhejiang Province (LY18D060003 and LY18C060002), and Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China (2016LMFS-B19). We thank Prof. Min Wu (Zhejiang University) for his technical support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

284_2018_1609_MOESM1_ESM.docx (1.6 mb)
Additional transmission electron micrograph, Table S1, the Maximum-Likelihood, Maximum-Parsimony phylogenetic tree based on 16S rRNA gene sequences and TLC figures of polar lipids of strain A7.6T are available as supplementary materials. Supplementary material 1 (DOCX 1677 KB)

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. 2.
    Asker D, Beppu T, Ueda K (2007) Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 30:291–296CrossRefGoogle Scholar
  3. 3.
    Barrow GI, Feltham RKA (1993) Cowan and steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Genus II. Flavobacterium gen. nov. In: Whitman W (ed) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, pp 97–117Google Scholar
  5. 5.
    Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
  6. 6.
    Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a gordian knot: Emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom nov (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148CrossRefGoogle Scholar
  7. 7.
    Chen C, Su Y, Tao TY, Fu GY, Zhang CY, Sun C, Zhang XQ, Wu M (2017) Maripseudobacter aurantiacus gen. nov., sp nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation basin. Int J Syst Evol Microbiol 67:778–783CrossRefGoogle Scholar
  8. 8.
    Chen WM, Su CL, Kwon SW, Sheu SY (2018) Flavobacterium effusum sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 68:3111–3117CrossRefGoogle Scholar
  9. 9.
    Choi JY, Kim JH, Lee PC (2018) Flavobacterium kingsejongi sp. nov., a carotenoid-producing species isolated from Antarctic penguin faeces. Int J Syst Evol Microbiol 68:911–916CrossRefGoogle Scholar
  10. 10.
    Dong K, Chen F, Du Y, Wang G (2013) Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 63:886–892CrossRefGoogle Scholar
  11. 11.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. 12.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  13. 13.
    Fitch WM (1971) Toward defining course of evolution-minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  14. 14.
    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefGoogle Scholar
  15. 15.
    Huq MA, Akter S, Lee SY (2018) Flavobacterium chungangensis sp nov., a bacterium isolated from soil of Chinese cabbage garden. Curr Microbiol 75:842–848CrossRefGoogle Scholar
  16. 16.
    Kämpfer P, Busse HJ, McInroy JA, Xu J, Glaeser SP (2015) Flavobacterium nitrogenifigens sp. nov., isolated from switchgrass (Panicum virgatum). Int J Syst Evol Microbiol 65:2803–2809CrossRefGoogle Scholar
  17. 17.
    Kang JY, Chun J, Jahng KY (2013) Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 63:1633–1638CrossRefGoogle Scholar
  18. 18.
    Kim JH, Choi BH, Jo M, Kim SC, Lee PC (2014) Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol 64:2884–2890CrossRefGoogle Scholar
  19. 19.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  20. 20.
    Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207CrossRefGoogle Scholar
  21. 21.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  22. 22.
    Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY, Donachie SP (2013) Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai’i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 63:3280–3286CrossRefGoogle Scholar
  23. 23.
    Li DD, Liu C, Zhang YQ, Wang XJ, Wang N, Peng M, Song XY, Su HN, Zhang XY, Zhang YZ, Shi M (2017) Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 67:1070–1074CrossRefGoogle Scholar
  24. 24.
    Liu H, Liu R, Yang SY, Gao WK, Zhang CX, Zhang KY, Lai R (2008) Flavobacterium anhuiense sp. nov., isolated from field soil. Int J Syst Evol Microbiol 58:756–760CrossRefGoogle Scholar
  25. 25.
    Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  26. 26.
    Okai M, Kihara I, Yokoyama Y, Ishida M, Urano N (2015) Isolation and characterization of benzo[a]pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol Lett 362:fnv143CrossRefGoogle Scholar
  27. 27.
    Qi YB, Wang CY, Lv CY, Lun ZM, Zheng CG (2017) Removal capacities of polycyclic aromatic hydrocarbons (PAHs) by a newly isolated strain from oilfield produced water. Int J Environ Res Public Health 14Google Scholar
  28. 28.
    Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefGoogle Scholar
  29. 29.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  30. 30.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. In: vol 1502. MIDI Technical Note 101 MIDI Inc., NewarkGoogle Scholar
  31. 31.
    Suwannachart C, Rueangyotchanthana K, Srichuay S, Pheng S, Fungsin B, Phoonsiri C, Kim SG (2016) Flavobacterium tistrianum sp. nov., a gliding bacterium isolated from soil. Int J Syst Evol Microbiol 66:2241–2246CrossRefGoogle Scholar
  32. 32.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  33. 33.
    Tindall BJ (1990) Lipid Composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar
  34. 34.
    Wu YH, Yu PS, Zhou YD, Xu L, Wang CS, Wu M, Oren A, Xu XW (2013) Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 63:3451–3456CrossRefGoogle Scholar
  35. 35.
    Yang JE, Kim SY, Im WT, Yi TH (2011) Flavobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61:1408–1412CrossRefGoogle Scholar
  36. 36.
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  37. 37.
    Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286CrossRefGoogle Scholar
  38. 38.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sanjit C. Debnath
    • 1
  • Can Chen
    • 1
  • Shu-Xia Liu
    • 1
    • 2
  • Ya-Nan Di
    • 1
  • Dao-Qiong Zheng
    • 1
  • Xin-Yang Li
    • 1
  • Xue-Wei Xu
    • 3
  • Jin-Zhong Xu
    • 1
    Email author
  • Pin-Mei Wang
    • 1
    Email author
  1. 1.Ocean CollegeZhejiang UniversityZhoushanPeople’s Republic of China
  2. 2.Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of OceanographyState Oceanic AdministrationHangzhouPeople’s Republic of China

Personalised recommendations