Current Microbiology

, Volume 76, Issue 1, pp 117–123 | Cite as

Hymenobacter pomorum sp. nov., Isolated from Apple Orchard Soil

  • Leonid N. Ten
  • Weilan Li
  • Seung-Yeol Lee
  • In-Kyu Kang
  • Young-Je Cho
  • Myung Kyum Kim
  • Hee-Young JungEmail author


A Gram-stain-negative, non-motile, rod-shaped bacterial strain, designated 9-2-1-1T, was isolated from apple orchard soil in Daegu, Republic of Korea. Comparative 16S rRNA gene sequence analysis showed that the isolate belongs to the family Cytophagaceae, Bacteroidetes and it is most closely related to Hymenobacter metalli A2-91T (97.8% similarity) and Hymenobacter marinus KJ035T (96.6%). Growth of strain 9-2-1-1T was observed at 4–30 °C, pH 6–8, and in the presence of 0–1.0% NaCl. The G+C content of the genomic DNA was 62.0 mol%. The predominant respiratory quinone of the isolate was MK-7; the major fatty acids were C15:0 iso (29.3%), C16:1ω5c (15.4%), C15:0 anteiso (12.5%), summed feature 3 (C16:1ω7c/C16:1ω6c; 12.3%), and C16:0 (10.6%); and the major polar lipid was phosphatidylethanolamine. The phenotypic and chemotaxonomic data supported the affiliation of strain 9-2-1-1T with the genus Hymenobacter. However, the DNA–DNA relatedness between the isolate and H. metalli and H. marinus were 31.3% and 24.7%, respectively. The DNA–DNA hybridization result and the differentiating phenotypic properties clearly indicate that strain 9-2-1-1T is the representative of a novel species in the genus Hymenobacter, for which the name Hymenobacter pomorum sp. nov. is proposed. The type strain is 9-2-1-1T (=KCTC 52740T = JCM 32193T).



This work was supported by the Brain Pool Program (Grant No. 2018H1D3A2065415) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Compliance with Ethical Standards

Conflict of interest

No conflict of interest is declared.

Supplementary material

284_2018_1595_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1666 KB)


  1. 1.
    Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868CrossRefGoogle Scholar
  2. 2.
    Buczolits SE, Denner BM, Kämpfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56:2189–2192CrossRefGoogle Scholar
  3. 3.
    Buczolits S, Busse HJ (2010) Genus IX. Hymenobacter. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 397–404Google Scholar
  4. 4.
    Buczolits S, Denner EBM, Vybiral D, Wieser M, Kämpfer P, Busse HJ (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52:445–456CrossRefGoogle Scholar
  5. 5.
    Cappuccino JG, Sherman N (2010) Microbiology: a laboratory manual, 9th edn. Benjamin Cummings, San FranciscoGoogle Scholar
  6. 6.
    Chung AP, Lopes A, Nobre MF, Morais PV (2010) Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 33:436–443CrossRefGoogle Scholar
  7. 7.
    Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  8. 8.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  9. 9.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  10. 10.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. 11.
    Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ, Xie B, Lv J (2014) Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie Leeuwenhoek 105:971–978CrossRefGoogle Scholar
  12. 12.
    Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  13. 13.
    Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the cytophaga/flavobacterium/bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383CrossRefGoogle Scholar
  14. 14.
    Kang H, Kim H, Joung Y, Kim KJ, Joh K (2016) Hymenobacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 65:4557–4562Google Scholar
  15. 15.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  16. 16.
    Klassen JL, Foght JM (2011) Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57CrossRefGoogle Scholar
  17. 17.
    Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205CrossRefGoogle Scholar
  18. 18.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  19. 19.
    La HJ, Im WT, Ten LN, Kang MS, Shin DY, Lee ST (2005) Paracoccus koreensis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 55:1657–1660CrossRefGoogle Scholar
  20. 20.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  21. 21.
    Lee JJ, Lee YH, Park SJ, Lee SY, Kim BO, Ten LN, Kim MK, Jung HY (2017) Spirosoma knui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 67:1359–1365CrossRefGoogle Scholar
  22. 22.
    Lee JJ, Lee YH, Park SJ, Lee SY, Park S, Kim MK, Ten LN, Jung HY (2017) Hymenobacter seoulensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 67:596–601CrossRefGoogle Scholar
  23. 23.
    Lee JJ, Park SJ, Lee YH, Lee SY, Ten LN, Jung HY (2017) Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int J Syst Evol Microbiol 67:1206–1211CrossRefGoogle Scholar
  24. 24.
    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  25. 25.
    Minnikin DE, O’Donnella AG, Goodfellowb M, Aldersonb G, Athalyeb M, Schaala A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  26. 26.
    Reddy GS, Garcia-Pichel F (2013) Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie Leeuwenhoek 103:321–330CrossRefGoogle Scholar
  27. 27.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  28. 28.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark, p 101Google Scholar
  29. 29.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  30. 30.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  31. 31.
    Subhash Y, Sasikala Ch, Ramana ChV (2014) Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 64:4129–4133CrossRefGoogle Scholar
  32. 32.
    Ten LN, Baek SH, Im WT, Lee M, Oh HW, Lee ST (2006) Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56:2677–2681CrossRefGoogle Scholar
  33. 33.
    Ten LN, Jung HM, Yoo SA, Im WT, Lee ST (2008) Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 46:519–524CrossRefGoogle Scholar
  34. 34.
    Ten LN, Lee YH, Lee JJ, Park SJ, Lee SY, Park SK, Lee DS, Kang IK, Jung HY (2017) Hymenobacter daeguensis sp. nov. isolated from river water. J Microbiol 55:253–259CrossRefGoogle Scholar
  35. 35.
    Ten LN, Lee JJ, Lee YH, Park SJ, Lee SY, Park S, Lee DS, Kang IK, Kim MK, Jung HY (2017) Hymenobacter knuensis sp. nov., isolated from river water. Curr Microbiol 74:515–521CrossRefGoogle Scholar
  36. 36.
    Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580Google Scholar
  37. 37.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  38. 38.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  39. 39.
    Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM et al (eds) Current protocols in molecular biology, no. supplement 27. Wiley, New York, pp 2.4.1–2.4.5Google Scholar
  40. 40.
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leonid N. Ten
    • 1
  • Weilan Li
    • 1
  • Seung-Yeol Lee
    • 1
    • 5
  • In-Kyu Kang
    • 2
  • Young-Je Cho
    • 3
  • Myung Kyum Kim
    • 4
  • Hee-Young Jung
    • 1
    • 5
    Email author
  1. 1.School of Applied BiosciencesKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Horticultural ScienceKyungpook National UniversityDaeguRepublic of Korea
  3. 3.School of Food Science and Biotechnology/Food and Bio-Industry Research InstituteKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Department of Bio and Environmental TechnologySeoul Women’s UniversitySeoulRepublic of Korea
  5. 5.Institute of Plant MedicineKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations