Advertisement

Current Microbiology

, Volume 76, Issue 1, pp 78–85 | Cite as

Complete Genome Sequence of Bacillus cereus CC-1, A Novel Marine Selenate/Selenite Reducing Bacterium Producing Metallic Selenides Nanomaterials

  • Lin Che
  • Weiping Xu
  • Jingjing Zhan
  • Lei Zhang
  • Lifen Liu
  • Hao ZhouEmail author
Article
  • 128 Downloads

Abstract

Metallic selenides nanomaterials are widely used in many fields, especially for photothermal therapy and thermoelectric devices. However, the traditional chemogenic methods are energy-intensive and environmentally unfriendly. In this study, the first complete genome data of a metallic selenides producing bacterium Bacillus cereus CC-1 was reported. This strain can not only reduce selenite and selenate into elemental selenium nanoparticles (SeNPs), but also synthesize several metallic selenides nanoparticles when adding metal ions (Pb2+, Ag+ and Bi3+) and selenite simultaneously. The size of the genome is 5,308,319 bp with 36.07% G+C content. Several putative genes responsible for heavy metal resistance, salt resistance, and selenate reduction were found. This genome data provide fundamental information, which support the use of this strain for the production of biocompatible photothermal and thermoelectric nanomaterials under mild conditions.

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 31500080) and “the Fundamental Research Funds for the Central Universities” (DUT17JC46).

Supplementary material

284_2018_1587_MOESM1_ESM.docx (398 kb)
Supplementary material 1 (DOCX 398 KB)

References

  1. 1.
    Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14:1263–1278CrossRefGoogle Scholar
  2. 2.
    Tan Y, Yao R, Wang R, Wang D, Wang G, Zheng S (2016) Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Micro Cell Fact 15:157CrossRefGoogle Scholar
  3. 3.
    Nancharaiah YV, Lens PNL (2015) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80CrossRefGoogle Scholar
  4. 4.
    Eswayah AS, Smith TJ, Gardiner PHE (2016) Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microb 82:4848–4859CrossRefGoogle Scholar
  5. 5.
    Yu B, Zhang Y, Zheng W, Fan C, Chen T (2012) Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg Chem 51:8956–8963CrossRefGoogle Scholar
  6. 6.
    Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130CrossRefGoogle Scholar
  7. 7.
    Jiang S, Ho CT, Lee J, Duong HV, Han S, Hur H (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 87:621–624CrossRefGoogle Scholar
  8. 8.
    Tugarova AV, Kamnev AA (2017) Proteins in microbial synthesis of selenium nanoparticles. Talanta 174:539–547CrossRefGoogle Scholar
  9. 9.
    Zhou H, Che L, Guo X, Wang X, Zhan J, Wu M, Hu Y, Yi X, Zhang X, Liu L (2017) Interface modulation of bacteriogenic Ag/AgCl nanoparticles by boosting the catalytic activity for reduction reactions using Co2+ ions. Chem Commun 53:4946–4949CrossRefGoogle Scholar
  10. 10.
    Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefGoogle Scholar
  11. 11.
    Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108CrossRefGoogle Scholar
  12. 12.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232CrossRefGoogle Scholar
  13. 13.
    Ge R, Mai G, Wang P, Zhou M, Luo Y, Cai Y, Zhou F (2016) CRISPRdigger: detecting CRISPRs with better direct repeat annotations. Sci Rep 6:32942CrossRefGoogle Scholar
  14. 14.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285CrossRefGoogle Scholar
  15. 15.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefGoogle Scholar
  16. 16.
    Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269CrossRefGoogle Scholar
  17. 17.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  18. 18.
    Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic acids res 33:D325–D328CrossRefGoogle Scholar
  19. 19.
    Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286CrossRefGoogle Scholar
  20. 20.
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:6CrossRefGoogle Scholar
  21. 21.
    Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Pontén TS, Ussery DW, Aarestrup FM, Lund O (2012) Multilocus sequence typing of total genome sequenced bacteria. J Clin Microbiol 50:1355–1361CrossRefGoogle Scholar
  22. 22.
    Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970CrossRefGoogle Scholar
  23. 23.
    Zhou H, Che L, Guo Z, Wu M, Li W, Xu W, Liu L (2018) Bacteria-mediated ultrathin Bi2Se3 nanosheets fabrication and their application in photothermal cancer therapy. ACS Sustain Chem Eng 6:4863–4870CrossRefGoogle Scholar
  24. 24.
    Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29CrossRefGoogle Scholar
  25. 25.
    Han L, Balazs DM, Shulga AG, Abdu-Aguye M, Ma W, Loi MA (2018) PbSe nanorod field-effect transistors: room-and low-temperature performance. Adv Electron Mater 4:1700580CrossRefGoogle Scholar
  26. 26.
    Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 126:11752–11753CrossRefGoogle Scholar
  27. 27.
    Ramisse V, Patra G, Garrigue H, Guesdon JL, Mock M (1996) Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol Lett 145:9–16CrossRefGoogle Scholar
  28. 28.
    Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515Google Scholar
  29. 29.
    Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M, Sun Y, Wang L, Shao Z (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:14082CrossRefGoogle Scholar
  30. 30.
    Sabaty M, Avazeri C, Pignol D, Vermeglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microb 67:5122–5126CrossRefGoogle Scholar
  31. 31.
    Wasmund K, Mußmann M, Loy A (2017) The life sulphuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep 9:323–344CrossRefGoogle Scholar
  32. 32.
    Tan Y, Wang Y, Wang Y, Xu D, Huang Y, Wang D, Wang G, Rensing C, Zheng S (2018) Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. J Hazard Mater 359:129–138CrossRefGoogle Scholar
  33. 33.
    Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microb Biotechnol 100:2555–2566CrossRefGoogle Scholar
  34. 34.
    Sarret G, Avoscan L, Carriere M, Collins R, Geoffroy N, Carrot F, Coves J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microb 71:2331–2337CrossRefGoogle Scholar
  35. 35.
    Yun JH, Bae JW (2018) Complete genome sequence of the halophile bacterium Kushneria marisflavi KCCM 80003T, isolated from seawater in Korea. Mar Genomics 37:35–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and EnvironmentDalian University of TechnologyPanjinChina

Personalised recommendations