Current Microbiology

, Volume 76, Issue 1, pp 37–47 | Cite as

Comparative Genomics of Lactobacillus brevis Reveals a Significant Plasmidome Overlap of Brewery and Insect Isolates

  • Marion E. Fraunhofer
  • Andreas J. Geißler
  • Jürgen Behr
  • Rudi F. VogelEmail author


Lactobacillus (L.) brevis represents a versatile, ubiquitistic species of lactic acid bacteria, occurring in various foods, as well as plants and intestinal tracts. The ability to deal with considerably differing environmental conditions in the respective ecological niches implies a genomic adaptation to the particular requirements to use it as a habitat beyond a transient state. Given the isolation source, 24 L. brevis genomes were analyzed via comparative genomics to get a broad view of the genomic complexity and ecological versatility of this species. This analysis showed L. brevis being a genetically diverse species possessing a remarkably large pan genome. As anticipated, it proved difficult to draw a correlation between chromosomal settings and isolation source. However, on plasmidome level, brewery- and insect-derived strains grouped into distinct clusters, referable to a noteworthy gene sharing between both groups. The brewery-specific plasmidome is characterized by several genes, which support a life in the harsh environment beer, but 40% of the brewery plasmidome were found in insect-derived strains as well. This suggests a close interaction between these habitats. Further analysis revealed the presence of a truncated horC cluster version in brewery- and insect-associated strains. This disproves horC, the major contributor to survival in beer, as brewery isolate specific. We conclude that L. brevis does not perform rigorous chromosomal changes to live in different habitats. Rather it appears that the species retains a certain genetic diversity in the plasmidome and meets the requirements of a particular ecological niche with the acquisition of appropriate plasmids.



Part of this work was supported by the German Ministry of Economics and Technology (via AiF) and the Wifoe (Wissenschaftsförderung der Deutschen Brauwirtschaft e.V., Berlin) project AiF 18194N.


None of the funding sources did have any influence on the study design, the collection, analysis and interpretation of data, the writing of the report and the decision to submit the article for publication.


  1. 1.
    Kantor A, Kluz M, Puchalski C, Terentjeva M, Kacaniova M (2016) Identification of lactic acid bacteria isolated from wine using real-time PCR. J Environ Sci Health B 51(1):52–56. CrossRefGoogle Scholar
  2. 2.
    Behr J, Geissler AJ, Preissler P, Ehrenreich A, Angelov A, Vogel RF (2015) Identification of ecotype-specific marker genes for categorization of beer-spoiling Lactobacillus brevis. Food Microbiol 51:130–138. CrossRefGoogle Scholar
  3. 3.
    Bessmeltseva M, Viiard E, Simm J, Paalme T, Sarand I (2014) Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation. PLoS ONE 9(4):e95449. CrossRefGoogle Scholar
  4. 4.
    Carafa I, Nardin T, Larcher R, Viola R, Tuohy K, Franciosi E (2015) Identification and characterization of wild Lactobacilli and Pediococci from spontaneously fermented mountain cheese. Food Microbiol 48:123–132. CrossRefGoogle Scholar
  5. 5.
    Wong CN, Ng P, Douglas AE (2011) Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 13(7):1889–1900. CrossRefGoogle Scholar
  6. 6.
    Kandler O, Weiss N (1986) Regular, nonsporing Gram-positive rods. Bergey’s Manual Syst Bacteriol 2:1208–1260Google Scholar
  7. 7.
    Annuk H, Shchepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M (2003) Characterization of intestinal Lactobacilli as putative probiotic candidates. J Appl Microbiol 94(3):403–412CrossRefGoogle Scholar
  8. 8.
    Ramos CL, Thorsen L, Schwan RF, Jespersen L (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36(1):22–29CrossRefGoogle Scholar
  9. 9.
    Takii Y, Nishimura S, Yoshida-Yamamoto S, Kobayashi Y, Nagayoshi E (2013) Effects of intake of pickles containing Lactobacillus brevis on immune activity and bowel symptoms in female students. J Nutr Sci Vitaminol 59(5):402–411CrossRefGoogle Scholar
  10. 10.
    O’Sullivan MG, Thornton G, O’Sullivan GC, Collins JK (1992) Probiotic bacteria: myth or reality? Trends Food Sci Technol 3:309–314CrossRefGoogle Scholar
  11. 11.
    Collins JK, Thornton K, O’Sullivan GO (1998) Selection of probiotic strains for human applications. Int Dairy J 8:487–490CrossRefGoogle Scholar
  12. 12.
    Kishi A, Kazuko U, Matsubara Y, Okuda C, Kishida T (1996) Effect of oral administration of Lactobacillus brevis subsp. coagulans on interferon-α producing capacity of humans. J Am Coll Nutr 15(4):408–412CrossRefGoogle Scholar
  13. 13.
    Gerez CL, Torino MI, Obregozo MD, Font de Valdez G (2010) A ready-to-use antifungal starter culture improves the shelf life of packaged bread. J Food Prot 73(4):758–762CrossRefGoogle Scholar
  14. 14.
    Jeyaram K, Romi W, Singh TA, Devi AR, Devi SS (2010) Bacterial species associated with traditional starter cultures used for fermented bamboo shoot production in Manipur state of India. Int J Food Microbiol 143(1–2):1–8CrossRefGoogle Scholar
  15. 15.
    Mugula JK, Narvhus JA, Sorhaug T (2003) Use of starter cultures of lactic acid bacteria and yeasts in the preparation of togwa, a Tanzanian fermented food. Int J Food Microbiol 83(3):307–318CrossRefGoogle Scholar
  16. 16.
    Sesena S, Sanchez I, Palop L (2005) Characterization of Lactobacillus strains and monitoring by RAPD-PCR in controlled fermentations of “Almagro” eggplants. Int J Food Microbiol 104(3):325–335CrossRefGoogle Scholar
  17. 17.
    Coton E, Coton M (2009) Evidence of horizontal transfer as origin of strain to strain variation of the tyramine production trait in Lactobacillus brevis. Food Microbiol 26(1):52–57. CrossRefGoogle Scholar
  18. 18.
    Romano A, Ladero V, Alvarez MA, Lucas PM (2014) Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. Int J Food Microbiol 175:14–19. CrossRefGoogle Scholar
  19. 19.
    O’Sullivan O, O’Callaghan J, Sangrador-Vegas A, McAuliffe O, Slattery L, Kaleta P, Callanan M, Fitzgerald GF, Ross RP, Beresford T (2009) Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiol 9:50CrossRefGoogle Scholar
  20. 20.
    Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SA, Leulier F (2016) Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 18(12):4974–4989CrossRefGoogle Scholar
  21. 21.
    Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2016) GenBank. Nucleic Acids Res 44(D1):D67–D72CrossRefGoogle Scholar
  22. 22.
    Burks C, Fickett JW, Goad WB, Kanehisa M, Lewitter FI, Rindone WP, Swindell CD, Tung CS, Bilofsky HS (1985) The GenBank nucleic acid sequence database. Comput Appl Biosci 1(4):225–233Google Scholar
  23. 23.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75CrossRefGoogle Scholar
  24. 24.
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(Database issue):D206–D214CrossRefGoogle Scholar
  25. 25.
    Quackenbush J, Liang F, Holt I, Pertea G, Upton J (2000) The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic Acids Res 28(1):141–145CrossRefGoogle Scholar
  26. 26.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefGoogle Scholar
  27. 27.
    Stover BC, Muller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11:7CrossRefGoogle Scholar
  28. 28.
    Retief JD (2000) Phylogenetic analysis using PHYLIP. Methods Mol Biol 132:243–258Google Scholar
  29. 29.
    Agren J, Sundstrom A, Hafstrom T, Segerman B (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS ONE 7(6):e39107CrossRefGoogle Scholar
  30. 30.
    Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403CrossRefGoogle Scholar
  31. 31.
    Darling AE, Treangen TJ, Messeguer X, Perna NT (2007) Analyzing patterns of microbial evolution using the mauve genome alignment system. Methods Mol Biol 396:135–152CrossRefGoogle Scholar
  32. 32.
    Vesth T, Lagesen K, Acar O, Ussery D (2013) CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS ONE 8(4):e60120CrossRefGoogle Scholar
  33. 33.
    Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131CrossRefGoogle Scholar
  34. 34.
    Behr J, Geissler AJ, Schmid J, Zehe A, Vogel RF (2016) The Identification of novel diagnostic marker genes for the detection of beer spoiling Pediococcus damnosus strains using the BlAst diagnostic gene findEr. PLoS ONE 11(3):e0152747CrossRefGoogle Scholar
  35. 35.
    Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33(Database issue):D192–D196CrossRefGoogle Scholar
  36. 36.
    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203CrossRefGoogle Scholar
  37. 37.
    Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32(Web Server issue):W327–W331CrossRefGoogle Scholar
  38. 38.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  39. 39.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421CrossRefGoogle Scholar
  40. 40.
    Consortium TU (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169CrossRefGoogle Scholar
  41. 41.
    Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28(18):3442–3444CrossRefGoogle Scholar
  42. 42.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452CrossRefGoogle Scholar
  43. 43.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefGoogle Scholar
  44. 44.
    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205CrossRefGoogle Scholar
  45. 45.
    Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36(Web Server issue):W423–W426CrossRefGoogle Scholar
  46. 46.
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319CrossRefGoogle Scholar
  47. 47.
    Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, Horvath P, Heidenreich J, Perna NT, Barrangou R, Steele JL (2012) Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics 13:533CrossRefGoogle Scholar
  48. 48.
    Kant R, Rintahaka J, Yu X, Sigvart-Mattila P, Paulin L, Mecklin JP, Saarela M, Palva A, von Ossowski I (2014) A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus. PLoS ONE 9(7):e102762CrossRefGoogle Scholar
  49. 49.
    Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Bocker G, Liebl W (2011) Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microbial Cell Fact 10(Suppl 1):S6CrossRefGoogle Scholar
  50. 50.
    Suzuki K, Iijima K, Ozaki K, Yamashita H (2005) Isolation of a hop-sensitive variant of Lactobacillus lindneri and identification of genetic markers for beer spoilage ability of lactic acid bacteria. Appl Environ Microbiol 71(9):5089–5097CrossRefGoogle Scholar
  51. 51.
    Vogel RF, Celano G, Minervini F, Gobbetti M, Geissler AJ (2017) Genomic diversity of Lactobacillus sanfranciscensis. Paper presented at the book of abstracts, 12th International symposium on lactic acid bacteria, Egmond aan Zee, The NetherlandsGoogle Scholar
  52. 52.
    Celano G, Geissler AJ, Minervini F, Gobbetti M, Vogel RF (2017) Lactobacilllus sanfranciscensis and Lactobacillus lindneri. Paper presented at the book of abstracts, 4th International symposium on microbial diversity, Bari, ItalyGoogle Scholar
  53. 53.
    Stefanovic E, Fitzgerald G, McAuliffe O (2017) Advances in the genomics and metabolomics of dairy lactobacilli: a review. Food Microbiol 61:33–49CrossRefGoogle Scholar
  54. 54.
    Thomas CM, Summers D (2008) Bacterial plasmids. in eLS. Wiley, Chichester. Google Scholar
  55. 55.
    Rossi F, Rizzotti L, Felis GE, Torriani S (2014) Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives. Food Microbiol 42:232–243CrossRefGoogle Scholar
  56. 56.
    Ferreira IMPLVO (2009) Beer carbohydrates. In: Preedy VR (ed) Beer in health and disease prevention. Elsevier, New York.Google Scholar
  57. 57.
    Behr J, Vogel RF (2009) Mechanisms of hop inhibition: hop ionophores. J Agric Food Chem 57(14):6074–6081CrossRefGoogle Scholar
  58. 58.
    Sakamoto K, Margolles A, van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183(18):5371–5375CrossRefGoogle Scholar
  59. 59.
    Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89(2–3):105–124CrossRefGoogle Scholar
  60. 60.
    Behr J, Gänzle MG, Vogel RF (2006) Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl Environ Microbiol 72(10):6483–6492CrossRefGoogle Scholar
  61. 61.
    Yasui T, Yoda K (1997) Purification and partial characterization of an antigen specific to Lactobacillus brevis with beer spoilage activity. FEMS Microbiol Lett 151(2):8CrossRefGoogle Scholar
  62. 62.
    Fraunhofer ME, Geissler AJ, Wefers D, Bunzel M, Jakob F, Vogel RF (2017) Characterization of β-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer. Int J Biol Macromol. Google Scholar
  63. 63.
    Iijima K, Suzuki K, Ozaki K, Yamashita H (2006) horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC45cc. J Appl Microbiol 100(6):1282–1288. CrossRefGoogle Scholar
  64. 64.
    Schurr BC, Hahne H, Kuster B, Behr J, Vogel RF (2015) Molecular mechanisms behind the antimicrobial activity of hop iso-alpha-acids in Lactobacillus brevis. Food Microbiol 46:553–563CrossRefGoogle Scholar
  65. 65.
    Geissler AJ, Behr J, Schmid J, Zehe A, Vogel RF (2017) Beer spoilage ability of lactic acid bacteria is a plasmid-encoded trait. Brew Sci 70:57–73Google Scholar
  66. 66.
    Behr J, Vogel RF (2010) Mechanisms of hop inhibition include the transmembrane redox reaction. Appl Environ Microbiol 76(1):142–149CrossRefGoogle Scholar
  67. 67.
    Christiaens JF, Franco LM, Cools TL, De Meester L, Michiels J, Wenseleers T, Hassan BA, Yaksi E, Verstrepen KJ (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9(2):425–432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marion E. Fraunhofer
    • 1
  • Andreas J. Geißler
    • 1
  • Jürgen Behr
    • 1
    • 2
  • Rudi F. Vogel
    • 1
    Email author
  1. 1.Lehrstuhl für Technische MikrobiologieTechnische Universität MünchenFreisingGermany
  2. 2.Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität MünchenFreisingGermany

Personalised recommendations