Current Microbiology

, Volume 75, Issue 11, pp 1477–1483 | Cite as

Spirillospora tritici sp. nov., a Novel Actinomycete Isolated from Rhizosphere Soil of Triticum aestivum L.

  • Jing Song
  • Jiabin Wang
  • Tianyu Sun
  • Chuang Li
  • Hairong He
  • Linlin Shi
  • Xiaowei Guo
  • Junwei ZhaoEmail author
  • Wensheng XiangEmail author


A Gram-positive, aerobic actinomycetes, designated strain SJ 21T, was isolated from the rhizosphere soil of Triticum aestivum L. collected from Langfang, Hebei Province, Central China. Strain SJ 21T with weak antifungal activity also contained genes (involved in antibiotics biosynthesis) of the nonribosomal peptide synthetases (NRPS), ketosynthase (KS) and methyl malonyl transferase domains (PKS-I) as well as KSα and KSβ domains (PKS-II). A polyphasic taxonomic study was carried out to establish the status of strain SJ 21T. The strain formed spherical spore vesicles (7.0–8.9 µm) consisting of coiled and branched chains on aerial mycelia. 16S rRNA gene sequence similarity studies showed that strain SJ 21T belongs to the genus Spirillospora and formed a distinct branch with its closest neighbour Spirillospora albida IFO 12248T (98.7%). The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Spirillospora. DNA–DNA hybridization experiments and phenotypic tests were carried out between strain SJ 21T and S. albida, which further clarified their relatedness and demonstrated that SJ 21T could be distinguished genomically from S. albida. Therefore, the strain is considered to represent a novel species of the genus Spirillospora, for which the name Spirillospora tritici sp. nov. is proposed. The type strain is SJ 21T (=CGMCC 4.7420T =JCM 32390T).



This work was supported in part by grants from the National Natural Science Foundation of China (Nos. 31672092 and 31701858). We are grateful to Prof. Aharon Oren for helpful advice on the specific epithet.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2018_1548_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3847 KB)


  1. 1.
    Ayuso A, Clark D, González I, Salazar O, Anderson A, Genilloud O (2005) A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Appl Microbiol Biotechnol 67:795–806CrossRefGoogle Scholar
  2. 2.
    Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24CrossRefGoogle Scholar
  3. 3.
    Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486CrossRefGoogle Scholar
  4. 4.
    Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805CrossRefGoogle Scholar
  5. 5.
    Bulgarelli D, Schlaeppi K, Spaepen S, ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  6. 6.
    Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287Google Scholar
  7. 7.
    Couch JN (1963) Some new genera and species of the Actinoplanaceae. J Elisha Mitchell Sci Soc 79:53–70Google Scholar
  8. 8.
    De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefGoogle Scholar
  9. 9.
    Domnas A (1968) Pigments of the Actinoplanaceae. I. Pigment production by Spirillospora 1655. J Elisha Mitchell Sci Soc 84:16–23Google Scholar
  10. 10.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  11. 11.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. 12.
    Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Leeuwenhoek 105:307–315CrossRefGoogle Scholar
  13. 13.
    Goodfellow M, Trujillo ME (2015) Spirillospora. In: Whitman WB (ed) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, pp 1–7Google Scholar
  14. 14.
    Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  15. 15.
    Hacène H, Kebir K, Othmane DS, Lefebvre G (1994) HM17, a new polyene antifungal antibiotic produced by a new strain of Spirillospora. J Appl Bacteriol 77:484–489CrossRefGoogle Scholar
  16. 16.
    Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  17. 17.
    Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefGoogle Scholar
  18. 18.
    Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kelly KL (1964) Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colors. US Government Printing Office, Washington, DCGoogle Scholar
  20. 20.
    Kim KO, Shin KS, Kim MN, Shin KS, Labeda DP, Han JH, Kim SB (2012) Reassessment of the status of Streptomyces setonii and reclassification of Streptomyces fimicarius as a later synonym of Streptomyces setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis. Int J Syst Evol Microbiol 62:2978–2985CrossRefGoogle Scholar
  21. 21.
    Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036CrossRefGoogle Scholar
  22. 22.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  23. 23.
    Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York, pp 682–724CrossRefGoogle Scholar
  24. 24.
    Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinobacteria taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  25. 25.
    Lipski A, Altendorf K (1995) Actinomadura nitritigenes sp. nov., isolated from experimental biofilters. Int J Syst Bacteriol 45:717–723CrossRefGoogle Scholar
  26. 26.
    Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206CrossRefGoogle Scholar
  27. 27.
    McInnis TM Jr, Domnas A (1970) Pigments of the Actinoplanaceae. 3. A spirillomycin-type pigment from Spirillospora 1309-b. Z Allg Mikrobiol 10:129–136CrossRefGoogle Scholar
  28. 28.
    McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182CrossRefGoogle Scholar
  29. 29.
    Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100CrossRefGoogle Scholar
  30. 30.
    Mertz FP, Yao RC (1990) Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Bacteriol 40:28–33CrossRefGoogle Scholar
  31. 31.
    Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233CrossRefGoogle Scholar
  32. 32.
    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  33. 33.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  34. 34.
    Schäfer D (1973) Beitrage zur Klassifzierung und Taxonomic der Actinoplanaceae. PhD dissertation, University of Marburg/LahnGoogle Scholar
  35. 35.
    Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panacea. Appl Environ Microbiol 76:3702–3714CrossRefGoogle Scholar
  36. 36.
    Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  37. 37.
    Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  38. 38.
    Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S (2016) Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 66:3310–3316CrossRefGoogle Scholar
  39. 39.
    Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491CrossRefGoogle Scholar
  40. 40.
    Stackebrandt E, Wunner-Füssl NL, Fowler VJ, Schleifer KH (1981) Deoxyribonucleic acid homologies and ribosomal ribonucleic acid similarities among spore forming members of the order Actinomycetales. Int J Syst Bacteriol 31:420–431CrossRefGoogle Scholar
  41. 41.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  42. 42.
    Waksman SA (1961) The Actinomycetes. vol. II. Classification, identification and descriptions of genera and species. Williams and Wilkins, BaltimoreGoogle Scholar
  43. 43.
    Waksman SA (1967) The Actinomycetes: a summary of current knowledge. Ronald Press, New YorkGoogle Scholar
  44. 44.
    Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  45. 45.
    Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178Google Scholar
  46. 46.
    Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefGoogle Scholar
  47. 47.
    Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng Z, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Leeuwenhoek 102:1–7CrossRefGoogle Scholar
  48. 48.
    Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  49. 49.
    Zhang Z, Kudo T, Nakajima Y, Wang Y (2001) Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:373–383CrossRefGoogle Scholar
  50. 50.
    Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jing Song
    • 1
  • Jiabin Wang
    • 1
    • 2
  • Tianyu Sun
    • 2
  • Chuang Li
    • 1
    • 2
  • Hairong He
    • 1
    • 2
  • Linlin Shi
    • 2
  • Xiaowei Guo
    • 2
  • Junwei Zhao
    • 2
    Email author
  • Wensheng Xiang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural ScienceBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations