Advertisement

Current Microbiology

, Volume 75, Issue 12, pp 1675–1683 | Cite as

CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms

  • Muhammad R. Javed
  • Maria Sadaf
  • Temoor Ahmed
  • Amna Jamil
  • Marium Nawaz
  • Hira Abbas
  • Anam Ijaz
Review Article

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR or more precisely CRISPR-Cas) system has proven to be a highly efficient and simple tool for achieving site-specific genome modifications in comparison to Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs). The discovery of bacterial defense system that uses RNA-guided DNA cleaving enzymes for producing double-strand breaks along CRISPR has provided an exciting alternative to ZFNs and TALENs for gene editing & regulation, as the CRISPR-associated (Cas) proteins remain the same for different gene targets and only the short sequence of the guide RNA needs to be changed to redirect the site-specific cleavage. Therefore, in recent years the CRISPR-Cas system has emerged as a revolutionary engineering tool for carrying out precise and controlled genetic modifications in many microbes such as Escherichia coli, Staphylococcus aureus, Lactobacillus reuteri, Clostridium beijerinckii, Streptococcus pneumonia, and Saccharomyces cerevisiae. Though, concerns about CRISPR-Cas effectiveness in interlinked gene modifications and off-target effects need to be addressed. Nevertheless, it holds a great potential to speed up the pace of gene function discovery by interacting with previously intractable organisms and by raising the extent of genetic screens. Therefore, the potential applications of this system in microbial adaptive immune system, genome editing, gene regulations, functional genomics & biosynthesis along ethical issues, and possible harmful effects have been reviewed.

Notes

Acknowledgements

All the authors are gratefully acknowledged for their contribution. The Higher Education Commission (HEC) of Pakistan is also highly acknowledged for providing the financial support to carry out the research work and to avail Professional English Language Editing Services under the project NRPU-5590.

Author Contributions

The manuscript drafting was carried out by MS, TA, AJ and MN. The initial manuscript revision was done by MS, TA and HA. The manuscript planning, proof reading and final revision was carried out by MRJ, TA and AI.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712.  https://doi.org/10.1126/science.1138140 CrossRefPubMedGoogle Scholar
  2. 2.
    Barnett P (2018) Transcription activator like effector nucleases (TALENs): a new, important, and versatile gene editing technique with a growing literature. Sci Technol Libr 37:100–112CrossRefGoogle Scholar
  3. 3.
    Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437.  https://doi.org/10.1093/nar/gkt520 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561.  https://doi.org/10.1099/mic.0.28048-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Brouns SJ, Jore MM, Lundgren M, Westr ER, Slijkhuis RJ, Snijders AP, Van Der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964.  https://doi.org/10.1126/science.1159689 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cai L, Fisher AL, Huang H, Xie Z (2016) CRISPR-mediated genome editing and human diseases. Genes Diseases 3(4):244–251.  https://doi.org/10.1016/j.gendis.2016.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Caplan AL, Parent B, Shen M, Plunkett C (2015) No time to waste—the ethical challenges created by CRISPR. EMBO Rep 16(11):1421–1426.  https://doi.org/10.15252/embr.201541337 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782.  https://doi.org/10.1534/genetics.111.131433 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen K, Gao (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40(6):271–279.  https://doi.org/10.1016/j.jgg.2013.03.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Choudhary E, Thakur P, Pareek M, Agarwal N (2015) Gene silencing by CRISPR interference in mycobacteria. Nat Commun 6:6267.  https://doi.org/10.1038/ncomms7267 CrossRefPubMedGoogle Scholar
  11. 11.
    Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41(20):9584–9592.  https://doi.org/10.1093/nar/gkt714 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607.  https://doi.org/10.1038/nature09886 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dhawan M, Sharma M, Grewal RS (2015) CRISPR Systems: RNA-Guided defence mechanisms in Bacteria and Archaea. Int J Curr Microbiol Appl Sci 4(6):187–200Google Scholar
  14. 14.
    DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343.  https://doi.org/10.1093/nar/gkt135 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    DiCristina M, Carruthers VB (2018) New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites. Parasitology 21:1–8Google Scholar
  16. 16.
    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121.  https://doi.org/10.1038/nmeth.2681 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fang Y, Cui L, Gu B, Arredondo F, Tyler BM (2017) Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9. Curr Protoc Microbiol 44:21A.1.1–21A.1.26.  https://doi.org/10.1002/cpmc.25 CrossRefGoogle Scholar
  18. 18.
    Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71.  https://doi.org/10.1038/nature09523 CrossRefGoogle Scholar
  20. 20.
    Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109(39):E2579–E2586.  https://doi.org/10.1073/pnas.1208507109 CrossRefPubMedGoogle Scholar
  21. 21.
    Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76(1):106–110CrossRefGoogle Scholar
  22. 22.
    Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997):1355–1358.  https://doi.org/10.1126/science.1192272 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170.  https://doi.org/10.1126/science.1179555 CrossRefPubMedGoogle Scholar
  24. 24.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefGoogle Scholar
  25. 25.
    Itakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, Boyer HW (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198(4321):1056–1063CrossRefGoogle Scholar
  26. 26.
    Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 71(4):1250–1254CrossRefGoogle Scholar
  27. 27.
    Jansen R, Embden J, Gaastra W, Schouls L (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575CrossRefGoogle Scholar
  28. 28.
    Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514.  https://doi.org/10.1128/AEM.04023-14 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821.  https://doi.org/10.1126/science.1225829 CrossRefPubMedGoogle Scholar
  30. 30.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485.  https://doi.org/10.1038/nature14592 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z et al (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298.  https://doi.org/10.1038/nbt.3404 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Luo ML, Leenay RT, Beisel CL (2016) Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng 113(5):930–943.  https://doi.org/10.1002/bit.25851 CrossRefPubMedGoogle Scholar
  33. 33.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ (2015) An updated evolutionary classification of CRISPR-Cas systems. Nature Rev Microbiol 13(11):722–736.  https://doi.org/10.1038/nrmicro3569 CrossRefGoogle Scholar
  34. 34.
    Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NG, van den Broek M (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res.  https://doi.org/10.1093/femsyr/fov004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mougiakos I, Bosma EF, Ganguly J, van der Oost J, van Kranenburg R (2018) Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects. Curr Opin Biotechnol 50:146–157CrossRefGoogle Scholar
  36. 36.
    Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182CrossRefGoogle Scholar
  37. 37.
    Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951.  https://doi.org/10.1038/srep24951 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Oh JH, van-Pijkeren JP (2014) CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42(17):e131.  https://doi.org/10.1093/nar/gku623 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16CrossRefGoogle Scholar
  40. 40.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183.  https://doi.org/10.1016/j.cell.2013.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rodriguez E (2016) Ethical issues in genome editing using CRISPR/Cas9 System. J Clin Res Bioeth 7:266.  https://doi.org/10.4172/2155-9627.1000266 CrossRefGoogle Scholar
  42. 42.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355.  https://doi.org/10.1038/nbt.2842 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7(1):171–192.  https://doi.org/10.1038/nprot.2011.431 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282.  https://doi.org/10.1093/nar/gkr606 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135–158.  https://doi.org/10.1146/annurev-genom-091212-153435 CrossRefPubMedGoogle Scholar
  46. 46.
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87.  https://doi.org/10.1126/science.1247005 CrossRefPubMedGoogle Scholar
  47. 47.
    Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810.  https://doi.org/10.1038/srep27810 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of Actinomycetal genomes. ACS Synth Biol 4(9):1020–1029.  https://doi.org/10.1021/acssynbio.5b00038 CrossRefPubMedGoogle Scholar
  49. 49.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646.  https://doi.org/10.1038/nrg2842 CrossRefPubMedGoogle Scholar
  50. 50.
    Umenhoffer K, Draskovits G, Nyerges Á, Karcagi I, Bogos B, Tímár E et al (2017) Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth Biology.  https://doi.org/10.1021/acssynbio.6b00378 CrossRefGoogle Scholar
  51. 51.
    Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84.  https://doi.org/10.1126/science.1246981 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wang Y, Zhang ZT, Seo SO, Choi K, Lu T, Jin YS et al (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1–5.  https://doi.org/10.1016/j.jbiotec.2015.02.005 CrossRefPubMedGoogle Scholar
  53. 53.
    Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP (2016) Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “Clean” mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol 5(7):721–732.  https://doi.org/10.1021/acssynbio.6b00060 CrossRefPubMedGoogle Scholar
  54. 54.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids. Nature 171(4356):737–738CrossRefGoogle Scholar
  55. 55.
    Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338.  https://doi.org/10.1038/nature10886 CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther-Nucleic Acids 4:e264.  https://doi.org/10.1038/mtna.2015.37 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang L, Zhou Q (2014) CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci 57:639–640.  https://doi.org/10.1007/s11427-014-4670-x CrossRefPubMedGoogle Scholar
  58. 58.
    Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y et al (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501):487–491.  https://doi.org/10.1038/nature13166 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad R. Javed
    • 1
  • Maria Sadaf
    • 1
  • Temoor Ahmed
    • 1
  • Amna Jamil
    • 1
  • Marium Nawaz
    • 1
  • Hira Abbas
    • 1
  • Anam Ijaz
    • 1
  1. 1.Department of Bioinformatics and BiotechnologyGovernment College University Faisalabad (GCUF)FaisalabadPakistan

Personalised recommendations