Current Microbiology

, Volume 75, Issue 5, pp 620–623 | Cite as

The Draft Genome Sequence of Thermophilic Thermoanaerobacterium thermosaccharolyticum M5 Capable of Directly Producing Butanol from Hemicellulose

Article

Abstract

A novel thermophilic and butanogenic Thermoanaerobacterium thermosaccharolyticum M5 was successfully isolated and characterized, which could produce butanol from hemicellulose via a unique ethanol–butanol (EB) pathway through consolidated bioprocessing (CBP). This represents the first wild-type bacterium which could produce butanol from hemicellulose via CBP under thermophilic conditions. The assembled draft genome of strain M5 is 2.64 Mp, which contains 2638 genes and 2465 protein-coding sequences with 33.90% G + C content. Among these annotated proteins, xylanases, xylosidases, and bifunctional alcohol/aldehyde dehydrogenase (AdhE) play key roles in the achievement of EB production from hemicellulose through CBP.

Notes

Acknowledgements

This work was supported by the Jiangsu Province Natural Science Foundation for Youths (No. BK20170993), the National Natural Science Foundation of China (21706125, 21727818, 21706124, 31700092), and the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08).

Compliance with Ethical Standards

Conflict of interest

The authors have declared there was no conflict of interest.

References

  1. 1.
    Beaugrand J, Chambat G, Wong VWK, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O’Donohue M, Chabbert B (2004) Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339(15):2529–2540CrossRefPubMedGoogle Scholar
  2. 2.
    Bhandiwad A, Shaw AJ, Guss A, Guseva A, Bahl H, Lynd LR (2013) Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv Microbiol 3(1):46–51CrossRefGoogle Scholar
  3. 3.
    Bhandiwad A, Shaw AJ, Guss A, Guseva A, Bahl H, Lynd LR (2014) Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng 21(1):17–25CrossRefPubMedGoogle Scholar
  4. 4.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina Sequence Data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S (2016) Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact 15(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jiang YJ, Xin FX, Lu JS, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol. 245(Pt B):1498–1506CrossRefGoogle Scholar
  8. 8.
    Khan AL, Asaf S, Khan AR, Al-Harrasi A, Al-Rawahi A, Lee IJ (2016) First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10. J Biotechnol 225:44–45CrossRefPubMedGoogle Scholar
  9. 9.
    Mahajan C, Chadha BS, Nain L, Kaur A (2014) Evaluation of glycosyl hydrolases from thermophilic fungi for their potential in bioconversion of alkali and biologically treated Parthenium hysterophorus weed and rice straw into ethanol. Bioresour Technol 163(7):300–307CrossRefPubMedGoogle Scholar
  10. 10.
    Ren NQ, Cao GL, Guo WQ, Wang AJ, Zhu YH, Liu BF, Xu JF (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35(7):2708–2712CrossRefGoogle Scholar
  11. 11.
    Wang MY, Qi Z, Ling L, Niu KL, Yi L, Wang FZ, Jiang BJ, Liu KM, Jiang Y, Fang X (2016) Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium, co-cultures. Appl Microbiol Biotechnol 100(19):1–14CrossRefGoogle Scholar
  12. 12.
    Wu YR, Zhou ZR, Zhao M, Lin B, Zhong M, Hu Z (2016) Molecular characterization of the thermostability and carbohydrate-binding module from a newly identified GH118 family agarase, AgaXa. Process Biochem 52:192–199CrossRefGoogle Scholar
  13. 13.
    Xin FX, Wu YR, He JZ (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80(15):4771–4778CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang J, Wang MY, Gao MT, Fang X, Yano S, Qin SL, Xia RR (2013) Efficient acetone–butanol–ethanol production from corncob with a new pretreatment technology—wet disk milling. Bioenerg Res 6(1):35–43CrossRefGoogle Scholar
  16. 16.
    Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR (2015) Cofactor specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197(15):2610–2619CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yujia Jiang
    • 1
  • Jie Liu
    • 1
  • Weiliang Dong
    • 1
    • 2
  • Wenming Zhang
    • 1
    • 2
  • Yan Fang
    • 1
    • 2
  • Jiangfeng Ma
    • 1
    • 2
  • Min Jiang
    • 1
    • 2
  • Fengxue Xin
    • 1
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations