Perimeter Determination of the Eight-Centered Oval
- 28 Downloads
While the ellipse is a plane curve known since Greek antiquity, a precise expression for its perimeter was established only in the eighteenth century by means of an integral that can be calculated numerically by a series expansion. Previously, a number of approximations were proposed at various times to provide a formula for approximating this perimeter. Beginning in the sixteenth century, several authors showed that an oval with eight centers coincides almost perfectly with the ellipse constructed on the same axes and can be considered a representation of the latter, provided that the radii of the arcs of the circles that compose it have been suitably chosen. It follows that the computation of the ellipse’s perimeter is thereby reduced to a simple sum of lengths of arcs of circles. However, it does not appear to us that this calculation, which could prove useful for geometers as well as archeologists, has ever been performed or published. The purpose of this work is thus, on the one...
Notes
Acknowledgments
The authors would like to thank the reviewers for their helpful advice, which enabled us to greatly improve this work.
References
- [1]G. Almkvist and B. Berndt. Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, \(\Pi \), and the ladies diary. American Mathematical Monthly 95:7 (1988), 585–608.Google Scholar
- [2]R. W. Barnard, K. Pearce, and L. Schovanec. Inequalities for the perimeter of an ellipse. Journal of Mathematical Analysis and Applications 260:2 (2001), 295–306.MathSciNetCrossRefGoogle Scholar
- [3]B. Berndt. Ramanujan’s Notebooks, vol. 3. Springer, 1991.Google Scholar
- [4]C. Bianchini and F. Fantin. Dimensioning of ancient buildings for spectacles through Stereometrica and De mensuris by Heron of Alexandria. Nexus Network Journal 17:1 (2015), 23–54.CrossRefGoogle Scholar
- [5]C. B. Boyer. The History of the Calculus and Its Conceptual Development. Dover, 1949.Google Scholar
- [6]I. N. Bronstein and K. A. Semendiaev. Aide-mémoire de Mathématiques. Eyrolles, Paris, 1990.Google Scholar
- [7]C. E. L. Camus. Éléments de géométrie théorique et pratique (Cours de Mathématique, Seconde Partie), pp. 526–536. Durand, 1750.Google Scholar
- [8]T. R. Chandrupatla and T. J. Osler. The Perimeter of an Ellipse. Mathematical Scientist 35 (2010) 122–131.Google Scholar
- [9]M. Decorps-Foulquier. Recherches sur les Coniques d’Apollonius de Perge et leurs commentateurs grecs. Klincksieck, Paris, 2000.Google Scholar
- [10]M. Docci. La forma del Colosseo: dieci anni di ricerche. Il dialogo con i gromatici romani. In: Disegnare idee immagini, vols. 18–19, pp. 23–32. Dipartimento del Rappresentazione e Rilievo dell’Universita degli Studi “La Sapienza” di Roma, Rome, Gangemi, 1999.Google Scholar
- [11]L. Euler. Animadversiones in rectificationem ellipsis (Observations sur la rectification des ellipses). Opuscula varii argumenti 2 (1750) 121–166; Opera Omnia: 1(20) 21–55.Google Scholar
- [12]A. Desgodetz. Les édifices antiques de Rome. 1682.Google Scholar
- [13]G. Fagnano. Produzioni matematiche, vols. 1, 2. In Pesaro, nella stamperia Gavelliana, 1750.Google Scholar
- [14]J. L. Ginovart, J. M. Toldra Domingo, G. Fortuny Anguera, A. Costa Jover, and P. de Sola-Morales Serra. The ellipse and the oval in the design of Spanish military defence in the eighteenth century. Nexus Network Journal 16:3 (2014), 587–612.Google Scholar
- [15]J. L. Ginovart, A. Costa-Jover, S. Coll-Pla, and R. M. Jori. The legacy of the geometry of Dürer: the fort of San Jorge (c. 1724). Fort, the international journal of fortification and military architecture, 43 (2015), 156–167.Google Scholar
- [16]J.-C. Golvin. L’Amphithéâtre Romain. Boccard, Paris, 1988.Google Scholar
- [17]J.-C. Golvin. L’amphithéâtre romain et les jeux du cirque dans le monde antique. Archéologie Nouvelle, Paris, 2012.Google Scholar
- [18]Y. Guillaumin. Balbus présentation systématique de toutes les figures, Podismus et textes connexes, Podismus et textes connexes. Napoli, Jovene, 1996.Google Scholar
- [19]J. Heiberg. Heronis Alexandrini, Opera quae supersunt omnia, volumen V. Stuttgart: Teubner, 1914 (reprinted 1976).Google Scholar
- [20]B. Herrera and A. Samper. Definition and calculation of an eight-centered oval which is quasi-equivalent to the ellipse. Journal for Geometry and Graphics 19:2 (2015), 257–268.Google Scholar
- [21]F. R. Honey, A table for drawing ellipses by arcs of circles. Scientific American Supplement 157 (July 5, 1890), 12088-1-2089.Google Scholar
- [22]F. R. Honey. Ellipses and equivalent ovals of equal areas. Scientific American Supplement 801 (May 9, 1891), 12798–12799.CrossRefGoogle Scholar
- [23]F. R. Honey. How to construct an ellipse: two interesting letters. Scientific American 95:8 (1906), 135.Google Scholar
- [24]F. R. Honey. A method of constructing an ellipse and measuring the curved length. Engineering News, April 1907, 388.Google Scholar
- [25]F. R. Honey. The eight-centered oval and ellipse. Popular Astronomy 16 (1908), 617–619.Google Scholar
- [26]J. Ivory, A new series for the rectification of the ellipsis; together with some observations on the evolution of the formula \((a^2 + b^2 - 2ab \cos \phi )^p\). Trans. Royal Soc. Edinburgh 4 (1796), 177–190.Google Scholar
- [27]A. A. Mazzotti. All Sides to an Oval. Springer, 2017.Google Scholar
- [28]C. MacLaurin. A Treatise of Fluxions in Two Books, vol. 2, T. W. and T. Ruddimans, Edinburgh, 1742.Google Scholar
- [29]Migliari R. Principi teorici e prime acquisizioni nel rilievo del colosseo. In: Disegnare idee immagini, vols. 18–19, pp. 33–50, Dipartimento del Rappresentazione e Rilievo dell’Universita degli Studi “La Sapienza” di Roma, Rome, Gangemi, 1999.Google Scholar
- [30]R. M. Milne. Extension of Huygens’ approximation to a circular arc. Mathematical Gazette 2:40 (1903), 309–311.Google Scholar
- [31]G. Peano. Sur une formule d’approximation pour la rectification de l’ellipse. CR. Acad. Sc. Paris 109 (1889) 960–961.Google Scholar
- [32]W. H. Qian and K. Qian. Optimising the four-arc approximation to ellipses. Computer Aided Geometric Design 18:1 (2001), 1–19.MathSciNetCrossRefGoogle Scholar
- [33]W. H. Qian. Four-arc approximation to ellipses: the best in general. Computer Aided Geometric Design 28:4 (2011), 257–269.Google Scholar
- [34]D. Raynaud. Le tracé continu des sections coniques à le Renaissance: applications optico-perspectives, héritage de la tradition mathématique arabe. Arabic Sciences and Philosophy 17 (2007), 239–345.MathSciNetCrossRefGoogle Scholar
- [35]P. Rosin. A survey and comparison of traditional piecewise circular approximations to the ellipse. Computer Aided Geometric Design 16:4 (1999), 269–286.MathSciNetCrossRefGoogle Scholar
- [36]P. Rosin. On serlio’s constructions of ovals. Mathematical Intelligencer 23:1 (2001), 58–69.MathSciNetCrossRefGoogle Scholar
- [37]P. Rosin. A family of constructions of approximate ellipses. International Journal of Shape Modeling 8:2 (2002), 193–199.Google Scholar
- [38]P. Rosin and E. Trucco. The amphitheatre construction problem. Incontro Internazionale di Studi Rileggere L’Antico. Rome, December 13–15, 2004.Google Scholar
- [39]S. Serlio. Il primo libro d’Architettura di Sebastiano Serlio, bolognese. Le premier livre d’Architecture de Sebastiano Serlio, Bolonoi, mis en langue Francoyse par Iehan Martin, 1545.Google Scholar
- [40]T. V. Tosca. Compendio Mathematico, en que se contienen todas las materias mas principales de las ciencias, que tratan de la cantidad, Tomo I: Geometria Elemental, Aritmetica Inferior, Geometria Practica, pp. 292–295. Antonio Bordazar, 1707.Google Scholar
- [41]C. Trevisan. Sullo schema geometrico costruttivo degli anfiteatri romani: gli esempi del Colosseo e dell’Arena di Verona, In: Il Colosseo. Studi e ricerche in Disegnare idee immagini, vols. 18–19, pp. 117–132. Dipartimento del Rappresentazione e Rilievo dell’Universita degli Studi “La Sapienza” di Roma, Rome, Gangemi, 1999.Google Scholar
- [42]M. Wilson Jones. Designing amphitheatres. Mitteilungen des Deutschen Archäologischen Instituts 100 (1993), 391–441.Google Scholar