# Perimeter Determination of the Eight-Centered Oval

• Jean-Marc Ginoux
• Jean-Claude Golvin
Article

While the ellipse is a plane curve known since Greek antiquity, a precise expression for its perimeter was established only in the eighteenth century by means of an integral that can be calculated numerically by a series expansion. Previously, a number of approximations were proposed at various times to provide a formula for approximating this perimeter. Beginning in the sixteenth century, several authors showed that an oval with eight centers coincides almost perfectly with the ellipse constructed on the same axes and can be considered a representation of the latter, provided that the radii of the arcs of the circles that compose it have been suitably chosen. It follows that the computation of the ellipse’s perimeter is thereby reduced to a simple sum of lengths of arcs of circles. However, it does not appear to us that this calculation, which could prove useful for geometers as well as archeologists, has ever been performed or published. The purpose of this work is thus, on the one...

## Notes

### Acknowledgments

The authors would like to thank the reviewers for their helpful advice, which enabled us to greatly improve this work.

## References

1. [1]
G. Almkvist and B. Berndt. Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, $$\Pi$$, and the ladies diary. American Mathematical Monthly 95:7 (1988), 585–608.Google Scholar
2. [2]
R. W. Barnard, K. Pearce, and L. Schovanec. Inequalities for the perimeter of an ellipse. Journal of Mathematical Analysis and Applications 260:2 (2001), 295–306.
3. [3]
B. Berndt. Ramanujan’s Notebooks, vol. 3. Springer, 1991.Google Scholar
4. [4]
C. Bianchini and F. Fantin. Dimensioning of ancient buildings for spectacles through Stereometrica and De mensuris by Heron of Alexandria. Nexus Network Journal 17:1 (2015), 23–54.
5. [5]
C. B. Boyer. The History of the Calculus and Its Conceptual Development. Dover, 1949.Google Scholar
6. [6]
I. N. Bronstein and K. A. Semendiaev. Aide-mémoire de Mathématiques. Eyrolles, Paris, 1990.Google Scholar
7. [7]
C. E. L. Camus. Éléments de géométrie théorique et pratique (Cours de Mathématique, Seconde Partie), pp. 526–536. Durand, 1750.Google Scholar
8. [8]
T. R. Chandrupatla and T. J. Osler. The Perimeter of an Ellipse. Mathematical Scientist 35 (2010) 122–131.Google Scholar
9. [9]
M. Decorps-Foulquier. Recherches sur les Coniques d’Apollonius de Perge et leurs commentateurs grecs. Klincksieck, Paris, 2000.Google Scholar
10. [10]
M. Docci. La forma del Colosseo: dieci anni di ricerche. Il dialogo con i gromatici romani. In: Disegnare idee immagini, vols. 18–19, pp. 23–32. Dipartimento del Rappresentazione e Rilievo dell’Universita degli Studi “La Sapienza” di Roma, Rome, Gangemi, 1999.Google Scholar
11. [11]
L. Euler. Animadversiones in rectificationem ellipsis (Observations sur la rectification des ellipses). Opuscula varii argumenti 2 (1750) 121–166; Opera Omnia: 1(20) 21–55.Google Scholar
12. [12]
A. Desgodetz. Les édifices antiques de Rome. 1682.Google Scholar
13. [13]
G. Fagnano. Produzioni matematiche, vols. 1, 2. In Pesaro, nella stamperia Gavelliana, 1750.Google Scholar
14. [14]
J. L. Ginovart, J. M. Toldra Domingo, G. Fortuny Anguera, A. Costa Jover, and P. de Sola-Morales Serra. The ellipse and the oval in the design of Spanish military defence in the eighteenth century. Nexus Network Journal 16:3 (2014), 587–612.Google Scholar
15. [15]
J. L. Ginovart, A. Costa-Jover, S. Coll-Pla, and R. M. Jori. The legacy of the geometry of Dürer: the fort of San Jorge (c. 1724). Fort, the international journal of fortification and military architecture, 43 (2015), 156–167.Google Scholar
16. [16]
J.-C. Golvin. L’Amphithéâtre Romain. Boccard, Paris, 1988.Google Scholar
17. [17]
J.-C. Golvin. L’amphithéâtre romain et les jeux du cirque dans le monde antique. Archéologie Nouvelle, Paris, 2012.Google Scholar
18. [18]
Y. Guillaumin. Balbus présentation systématique de toutes les figures, Podismus et textes connexes, Podismus et textes connexes. Napoli, Jovene, 1996.Google Scholar
19. [19]
J. Heiberg. Heronis Alexandrini, Opera quae supersunt omnia, volumen V. Stuttgart: Teubner, 1914 (reprinted 1976).Google Scholar
20. [20]
B. Herrera and A. Samper. Definition and calculation of an eight-centered oval which is quasi-equivalent to the ellipse. Journal for Geometry and Graphics 19:2 (2015), 257–268.Google Scholar
21. [21]
F. R. Honey, A table for drawing ellipses by arcs of circles. Scientific American Supplement 157 (July 5, 1890), 12088-1-2089.Google Scholar
22. [22]
F. R. Honey. Ellipses and equivalent ovals of equal areas. Scientific American Supplement 801 (May 9, 1891), 12798–12799.
23. [23]
F. R. Honey. How to construct an ellipse: two interesting letters. Scientific American 95:8 (1906), 135.Google Scholar
24. [24]
F. R. Honey. A method of constructing an ellipse and measuring the curved length. Engineering News, April 1907, 388.Google Scholar
25. [25]
F. R. Honey. The eight-centered oval and ellipse. Popular Astronomy 16 (1908), 617–619.Google Scholar
26. [26]
J. Ivory, A new series for the rectification of the ellipsis; together with some observations on the evolution of the formula $$(a^2 + b^2 - 2ab \cos \phi )^p$$. Trans. Royal Soc. Edinburgh 4 (1796), 177–190.Google Scholar
27. [27]
A. A. Mazzotti. All Sides to an Oval. Springer, 2017.Google Scholar
28. [28]
C. MacLaurin. A Treatise of Fluxions in Two Books, vol. 2, T. W. and T. Ruddimans, Edinburgh, 1742.Google Scholar
29. [29]
Migliari R. Principi teorici e prime acquisizioni nel rilievo del colosseo. In: Disegnare idee immagini, vols. 18–19, pp. 33–50, Dipartimento del Rappresentazione e Rilievo dell’Universita degli Studi “La Sapienza” di Roma, Rome, Gangemi, 1999.Google Scholar
30. [30]
R. M. Milne. Extension of Huygens’ approximation to a circular arc. Mathematical Gazette 2:40 (1903), 309–311.Google Scholar
31. [31]
G. Peano. Sur une formule d’approximation pour la rectification de l’ellipse. CR. Acad. Sc. Paris 109 (1889) 960–961.Google Scholar
32. [32]
W. H. Qian and K. Qian. Optimising the four-arc approximation to ellipses. Computer Aided Geometric Design 18:1 (2001), 1–19.
33. [33]
W. H. Qian. Four-arc approximation to ellipses: the best in general. Computer Aided Geometric Design 28:4 (2011), 257–269.Google Scholar
34. [34]
D. Raynaud. Le tracé continu des sections coniques à le Renaissance: applications optico-perspectives, héritage de la tradition mathématique arabe. Arabic Sciences and Philosophy 17 (2007), 239–345.
35. [35]
P. Rosin. A survey and comparison of traditional piecewise circular approximations to the ellipse. Computer Aided Geometric Design 16:4 (1999), 269–286.
36. [36]
P. Rosin. On serlio’s constructions of ovals. Mathematical Intelligencer 23:1 (2001), 58–69.
37. [37]
P. Rosin. A family of constructions of approximate ellipses. International Journal of Shape Modeling 8:2 (2002), 193–199.Google Scholar
38. [38]
P. Rosin and E. Trucco. The amphitheatre construction problem. Incontro Internazionale di Studi Rileggere L’Antico. Rome, December 13–15, 2004.Google Scholar
39. [39]
S. Serlio. Il primo libro d’Architettura di Sebastiano Serlio, bolognese. Le premier livre d’Architecture de Sebastiano Serlio, Bolonoi, mis en langue Francoyse par Iehan Martin, 1545.Google Scholar
40. [40]
T. V. Tosca. Compendio Mathematico, en que se contienen todas las materias mas principales de las ciencias, que tratan de la cantidad, Tomo I: Geometria Elemental, Aritmetica Inferior, Geometria Practica, pp. 292–295. Antonio Bordazar, 1707.Google Scholar
41. [41]
C. Trevisan. Sullo schema geometrico costruttivo degli anfiteatri romani: gli esempi del Colosseo e dell’Arena di Verona, In: Il Colosseo. Studi e ricerche in Disegnare idee immagini, vols. 18–19, pp. 117–132. Dipartimento del Rappresentazione e Rilievo dell’Universita degli Studi “La Sapienza” di Roma, Rome, Gangemi, 1999.Google Scholar
42. [42]
M. Wilson Jones. Designing amphitheatres. Mitteilungen des Deutschen Archäologischen Instituts 100 (1993), 391–441.Google Scholar