Advertisement

How Efficiently Can One Untangle a Double-Twist? Waving is Believing!

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 69

This is the net price. Taxes to be calculated in checkout.

References

  1. [1]

    John H. Conway, Derek A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A. K. Peters, Natick, MA, 2003.

  2. [2]

    Charles Curtis, Linear Algebra, Springer, New York, 1993.

  3. [3]

    Antonio Martos de la Torre, Dirac’s Belt Trick for Spin 1/2 Particle, http://vimeo.com/62228139, accessed October 2, 2016.

  4. [4]

    Greg Egan, Dirac Belt Trick, http://www.gregegan.net/APPL ETS/21/21.html, accessed October 2, 2016.

  5. [5]

    Leonhard Euler, Formulae generales pro translatione quacunque corporum rigidorum (General formulas for the translation of arbitrary rigid bodies), E478, Novi Commentarii Academiae Scientiarum Petropolitanae 20 (1776), 189–207; http://eulerarch ive.maa.org/, accessed October 2, 2016.

  6. [6]

    Euler’s Rotation Theorem, Wikipedia, http://en.wikipedia.org/wiki/Euler’s_rotation_theorem, accessed October 2, 2016.

  7. [7]

    Euler’s Theorem␣(Rotation), Citizendium, http://en.citizendium.org/wiki/Euler’s_theorem_(rotation), accessed October 2, 2016.

  8. [8]

    Richard P. Feynman, Steven Weinberg, Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures; Lecture Notes Compiled by Richard MacKenzie and Paul Doust, Cambridge University Press, New York, Cambridge, 1987.

  9. [9]

    George Francis, Louis Kauffman, Air on the Dirac strings, in Mathematical Legacy of Wilhelm Magnus, Contemporary Mathematics 169 (1994), 261–276.

  10. [10]

    George Francis et al, Air on the Dirac Strings, movie, University of Illinois, Chicago, 1993, http://www.evl.uic.edu/hypercomplex/html/dirac.html, http://www.evl.uic.edu/hypercomplex/movies/dirac.mpg, https://www.youtube.com/watch?v=CYBqIRM8GiY, accessed October 2, 2016.

  11. [11]

    Alfred Gray, Elsa Abbena, Simon Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman & Hall CRC, Boca Raton, FL, 2006.

  12. [12]

    Jean Gallier, Geometric Methods and Applications: For Computer Science and Engineering, Springer, New York, 2001.

  13. [13]

    Andrew J. Hanson, Visualizing Quaternions, Elsevier, 2006.

  14. [14]

    John Hart, George Francis, Louis Kauffman, Visualizing quaternion rotation, ACM Transactions on Graphics 13 (1994), 256–276.

  15. [15]

    Morris Hirsch, Differential Topology, Springer, New York, 1997.

  16. [16]

    Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973.

  17. [17]

    Orientation Entanglement, Wikipedia, http://en.wikipedia.org/wiki/Orientation_entanglement, accessed October 2, 2016.

  18. [18]

    Robert A. (Bob) Palais, Bob Palais’ Belt Trick, Plate Trick, Tangle Trick Links, http://www.math.utah.edu/~palais/links.html, http://www.math.utah.edu/~palais/JavaBeltPlateQuat/belt.html, http:// www.math.utah.edu/~palais/bp.html, accessed October 2, 2016.

  19. [19]

    David Pengelley, Daniel Ramras, The double-tipping nullhomotopy, http://math.iupui.edu/~dramras/double-tip.html, accessed October 2, 2016. Also at https://www.youtube.com/playlist?list=PLAfnEXvHU52ldJaOye-8kZV_C1CjxGx2C.

  20. [20]

    Roger Penrose, Wolfgang Rindler, Spinors and Space-Time: Volume 1, Cambridge University Press, 1984.

  21. [21]

    Donnelly Phillips, Mae Markowski, Joseph Frias, Mark Boahen, Virtual Reality Experience of Nullhomotopy in SO(3,R) , Oculus Rift App, George Mason University Experimental Geometry Lab, http://meglab.wikidot.com/visualization, accessed October 2, 2016.

  22. [22]

    Plate Trick, Wikipedia, http://en.wikipedia.org/wiki/Plate_trick, accessed October 2, 2016.

  23. [23]

    Quaternions and Spatial Rotation, Wikipedia, http://en.wikipedia. org/wiki/Quaternions_and_spatial_rotation, accessed October 2, 2016.

  24. [24]

    Tari Piring - Indonesian Candle Dance, https://www.youtube.com/watch?v=0FQsisO1gOY, accessed October 2, 2016.

Download references

Author information

Correspondence to David Pengelley.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00283-017-9728-8.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pengelley, D., Ramras, D. How Efficiently Can One Untangle a Double-Twist? Waving is Believing!. Math Intelligencer 39, 27–40 (2017). https://doi.org/10.1007/s00283-016-9690-x

Download citation