Advertisement

Resolution of allergic asthma

  • Susetta FinottoEmail author
Review
  • 10 Downloads

Abstract

Allergic asthma is an inflammatory disease of the airways characterized by recurrent episodes of wheezing and bronchoconstriction. Chronic inflammation may finally lead to structural damage followed by airway remodeling. Various studies in recent years contributed to unravel important aspects of the immunopathogenesis of asthma and adapted new pharmaceutical developments. Here, I consider some novel insights into the immunopathogenesis of asthma and the protective and pathogenic roles of some innate and adaptive immune cells as well as the function of soluble mediators such as cytokines. Particular attention will be given to new concepts on resolution of chronic airway inflammation for prevention of airway structural damage.

Keywords

Allergic asthma Resolution of inflammation Airways Epithelium Lymphocytes Eosinophils 

Notes

Acknowledgments

The author thanks Julia Kölle, Adriana Geiger, Susanne Mittler, Eveldina Nendel, and Sonja Trump for their assistance and continuous commitment to our scientific research.

Funding information

This work was also supported by a DFG grant FI817/6-1 awarded to Susetta Finotto and by the SFB1181.

Compliance with ethical standards

Conflict of Interest

The author declares that she has no conflict of interest.

References

  1. 1.
    Hartert TV, Peebles RS Jr (2000) Epidemiology of asthma: the year in review. Curr Opin Pulm Med 6(1):4–9PubMedCrossRefGoogle Scholar
  2. 2.
    Xepapadaki P, Bachert C, Finotto S, Jartti T, Konstantinou GN, Kiefer A, Kowalski M, Lewandowska-Polak A, Lukkarinen H, Roumpedaki E, Sobanska A, Sintobin I, Vuorinen T, Zhang N, Zimmermann T, Papadopoulos NG (2018) Contribution of repeated infections in asthma persistence from preschool to school age: design and characteristics of the PreDicta cohort. Pediatr Allergy Immunol 29(4):383–393PubMedCrossRefGoogle Scholar
  3. 3.
    Megremis S, Niespodziana K, Cabauatan C, Xepapadaki P, Kowalski ML, Jartti T, Bachert C, Finotto S, West P, Stamataki S, Lewandowska-Polak A, Lukkarinen H, Zhang N, Zimmermann T, Stolz F, Neubauer A, Akdis M, Andreakos E, Valenta R, Papadopoulos NG (2018) Rhinovirus species-specific antibodies differentially reflect clinical outcomes in health and asthma. Am J Respir Crit Care MedGoogle Scholar
  4. 4.
    Earl CS, An SQ, Ryan RP (2015) The changing face of asthma and its relation with microbes. Trends Microbiol 23(7):408–418PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Strunk RC, Bloomberg GR (2006) Omalizumab for asthma. N Engl J Med 354(25):2689–2695PubMedCrossRefGoogle Scholar
  6. 6.
    Chen Q, Guo X, Deng N, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Nie H (2019) alpha-galactosylceramide treatment before allergen sensitization promotes iNKT cell-mediated induction of Treg cells, preventing Th2 cell responses in murine asthma. J Biol Chem 294(14):5438–5455PubMedCrossRefGoogle Scholar
  7. 7.
    Chia YL, Yan L, Yu B, Wang B, Barker P, Goldman M, Roskos L (2019) Relationship Between benralizumab exposure and efficacy for patients with severe eosinophilic asthma. Clin Pharmacol Ther 106(2):383–390PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dharmage SC, Perret JL, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatr 7:246PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fishe JN, Palmer E, Finlay E, Smotherman C, Gautam S, Hendry P, Hendeles L (2019) A statewide study of the epidemiology of emergency medical services’ management of pediatric asthma. Pediatr Emerg CareGoogle Scholar
  10. 10.
    Morgan BW, Grigsby MR, Siddharthan T, Chowdhury M, Rubinstein A, Gutierrez L, Irazola V, Miranda JJ, Bernabe-Ortiz A, Alam D, Wise RA, Checkley W (2019) Epidemiology and risk factors of asthma-chronic obstructive pulmonary disease overlap in low- and middle-income countries. J Allergy Clin Immunol 143(4):1598–1606PubMedCrossRefGoogle Scholar
  11. 11.
    Sordillo JE, Kelly R, Bunyavanich S, McGeachie M, Qiu W, Croteau-Chonka DC, Soto-Quiros M, Avila L, Celedon JC, Brehm JM, Weiss ST, Gold DR, Litonjua AA (2015) Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J Allergy Clin Immunol 136(4):885–92 e2PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18(5):673–683PubMedCrossRefGoogle Scholar
  13. 13.
    Lambrecht BN, Hammad H, Fahy JV (2019) The cytokines of asthma. Immunity 50(4):975–991PubMedCrossRefGoogle Scholar
  14. 14.
    Alagha K, Bourdin A, Vernisse C, Garulli C, Tummino C, Charriot J, Vachier I, Suehs C, Chanez P, Gras D (2019) Goblet cell hyperplasia as a feature of neutrophilic asthma. Clin Exp Allergy 49(6):781–788PubMedCrossRefGoogle Scholar
  15. 15.
    Bullone M, Carriero V, Bertolini F, Folino A, Mannelli A, Di Stefano A, Gnemmi I, Torchio R, Ricciardolo FLM (2019) Elevated serum IgE, OCS-dependence and IL-17/22 expression in highly neutrophilic asthma. Eur Respir JGoogle Scholar
  16. 16.
    Kalchiem-Dekel O, Yao X, Levine SJ (2019) Meeting the challenge of identifying new treatments for type 2-low neutrophilic asthma. ChestGoogle Scholar
  17. 17.
    Ravi A, Chowdhury S, Dijkhuis A, Bonta PI, Sterk PJ, Lutter R (2019) Neutrophilic inflammation in asthma and defective epithelial translational control. Eur Respir J 54(2)PubMedCrossRefGoogle Scholar
  18. 18.
    Clark KL, Li Y, Krauss MR, Kelley PW (2000) The asthma accession standard: a survival analysis of military recruits, 1995 to 1997. Mil Med 165(11):852–854PubMedCrossRefGoogle Scholar
  19. 19.
    Liu H, Tan J, Liu J, Feng H, Pan D (2019) Altered mast cell activity in response to rhinovirus infection provides novel insight into asthma. J Asthma 18:1–9CrossRefGoogle Scholar
  20. 20.
    Salomonsson M, Malinovschi A, Kalm-Stephens P, Dahlin JS, Janson C, Alving K, Hallgren J (2019) Circulating mast cell progenitors correlate with reduced lung function in allergic asthma. Clin Exp Allergy 49(6):874–882PubMedCrossRefGoogle Scholar
  21. 21.
    Komi DEA, Bjermer L (2019) Mast Cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56(2):234–247CrossRefGoogle Scholar
  22. 22.
    Petsky HL, Cates CJ, Kew KM, Chang AB (2018) Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax 73(12):1110–1119PubMedCrossRefGoogle Scholar
  23. 23.
    Cooper K, Frampton G, Harris P, Rose M, Chorozoglou M, Pickett K (2018) Reslizumab for Treating asthma with elevated blood eosinophils inadequately controlled by inhaled corticosteroids: an evidence review group perspective of a NICE single technology appraisal. pharmacoeconomics 36(5):545–553PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshikawa S, Oh-Hora M, Hashimoto R, Nagao T, Peters L, Egawa M, Ohta T, Miyake K, Adachi T, Kawano Y, Yamanishi Y, Karasuyama H (2019) Pivotal role of STIM2, but not STIM1, in IL-4 production by IL-3-stimulated murine basophils. Sci Signal 12(576)PubMedCrossRefGoogle Scholar
  25. 25.
    Cirino M, Lagente V, Lefort J, Vargaftig BB (1986) A study with BN 52021 demonstrates the involvement of PAF-acether in IgE-dependent anaphylactic bronchoconstriction. Prostaglandins 32(1):121–126PubMedCrossRefGoogle Scholar
  26. 26.
    Casale TB, Luskin AT, Busse W, Zeiger RS, Trzaskoma B, Yang M, Griffin NM, Chipps BE (2019) Omalizumab Effectiveness by biomarker status in patients with asthma: evidence from PROSPERO, a prospective real-world study. J Allergy Clin Immunol Pract 7(1):156–164 e1PubMedCrossRefGoogle Scholar
  27. 27.
    Matucci A, Vultaggio A, Maggi E, Kasujee I (2018) Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res 19(1):113PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13(1):9–22PubMedCrossRefGoogle Scholar
  29. 29.
    Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, Schleich FN, Radermecker M, Thielemans K, Gillet L, Thiry M, Belvisi MG, Louis R, Desmet C, Marichal T, Bureau F (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126(9):3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4(1):15–24PubMedCrossRefGoogle Scholar
  31. 31.
    Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Marechal P, Perin F, Schyns J, Rocks N, Toussaint M, Cataldo D, Johnston SL, Bureau F, Marichal T (2019) Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat ImmunolGoogle Scholar
  32. 32.
    Ekstedt S, Stenberg H, Tufvesson E, Diamant Z, Bjermer L, Kumlien Georen S, Cardell LO (2019) The potential role of CD16(high) CD62L(dim) neutrophils in the allergic asthma. AllergyGoogle Scholar
  33. 33.
    Busse WW (2019) What are those neutrophils doing in severe asthma anyway? J Allergy Clin Immunol Pract 7(2):526–528PubMedCrossRefGoogle Scholar
  34. 34.
    Grunwell JR, Stephenson ST, Tirouvanziam R, Brown LAS, Brown MR, Fitzpatrick AM (2019) Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival and impaired clearance. J Allergy Clin Immunol Pract 7(2):516–525 e6PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Radermecker C, Louis R, Bureau F, Marichal T (2018) Role of neutrophils in allergic asthma. Curr Opin Immunol 54:28–34PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Saradna A, Do DC, Kumar S, Fu QL, Gao P (2018) Macrophage polarization and allergic asthma. Transl Res 191:1–14PubMedCrossRefGoogle Scholar
  37. 37.
    Chung FT, Huang HY, Lo CY, Huang YC, Lin CW, He CC, He JR, Sheng TF, Wang CH (2019) Increased ratio of matrix metalloproteinase-9 (MMP-9)/Tissue inhibitor metalloproteinase-1 from alveolar macrophages in chronic asthma with a fast decline in FEV1 at 5-year follow-up. J Clin Med 8(9)PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Tokunaga Y, Imaoka H, Kaku Y, Kawayama T, Hoshino T (2019) The significance of CD163-expressing macrophages in asthma. Ann Allergy Asthma Immunol 123(3):263–270PubMedCrossRefGoogle Scholar
  39. 39.
    de Groot LES, van der Veen TA, Martinez FO, Hamann J, Lutter R, Melgert BN (2019) Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 316(2):L369–L384PubMedCrossRefGoogle Scholar
  40. 40.
    Ubel C, Graser A, Koch S, Rieker RJ, Lehr HA, Muller M, Finotto S (2014) Role of Tyk-2 in Th9 and Th17 cells in allergic asthma. Sci Rep 4:5865PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chen Z, Wang L (2019) Ovalbumin induces natural killer cells to secrete Th2 cytokines IL5 and IL13 in a mouse model of asthma. Mol Med Rep 19(4):3210–3216PubMedPubMedCentralGoogle Scholar
  42. 42.
    Leomicronn B (2017) T cells in allergic asthma: key players beyond the Th2 pathway. Curr Allergy Asthma Rep 17(7):43PubMedCrossRefGoogle Scholar
  43. 43.
    Krabbendam L, Bal SM, Spits H, Golebski K (2018) New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol Rev 286(1):74–85PubMedCrossRefGoogle Scholar
  44. 44.
    Nakamura Y, Ghaffar O, Olivenstein R, Taha RA, Soussi-Gounni A, Zhang DH, Ray A, Hamid Q (1999) Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol 103(2 Pt 1):215–222PubMedCrossRefGoogle Scholar
  45. 45.
    Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, Renz H, Neurath MF (2001) Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med 193(11):1247–1260PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, Rogon C, Zeitvogel J, Zhang N, Bille J, Homburg U, Turowska A, Bachert C, Werfel T, Buhl R, Renz J, Garn H, Renz H (2015) Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med 372(21):1987–1995PubMedCrossRefGoogle Scholar
  47. 47.
    Ubel C, Sopel N, Graser A, Hildner K, Reinhardt C, Zimmermann T, Rieker RJ, Maier A, Neurath MF, Murphy KM, Finotto S (2014) The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF-like (BATF), regulates lymphocyte- and mast cell-driven immune responses in the setting of allergic asthma. J Allergy Clin Immunol 133(1):198–206 e1-9PubMedCrossRefGoogle Scholar
  48. 48.
    Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123(11):4641–4653PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jabeen R, Kaplan MH (2012) The symphony of the ninth: the development and function of Th9 cells. Curr Opin Immunol 24(3):303–307PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252(1):104–115PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Liao W, Spolski R, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A 111(9):3508–3513PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I, Ishigame H, Hao L, Herbert DR, Flavell RA (2013) Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39(4):744–757PubMedCrossRefGoogle Scholar
  53. 53.
    Neurath MF, Kaplan MH (2017) Th9 cells in immunity and immunopathological diseases. Semin Immunopathol 39(1):1–4PubMedCrossRefGoogle Scholar
  54. 54.
    Levitt RC, McLane MP, MacDonald D, Ferrante V, Weiss C, Zhou T, Holroyd KJ, Nicolaides NC (1999) IL-9 pathway in asthma: new therapeutic targets for allergic inflammatory disorders. J Allergy Clin Immunol 103(5 Pt 2):S485–S491PubMedCrossRefGoogle Scholar
  55. 55.
    Hoppenot D, Malakauskas K, Lavinskiene S, Sakalauskas R (2015) p-STAT6, PU.1, and NF-kappaB are involved in allergen-induced late-phase airway inflammation in asthma patients. BMC Pulm Med 15:122PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hoppenot D, Malakauskas K, Lavinskiene S, Bajoriuniene I, Kalinauskaite V, Sakalauskas R (2015) Peripheral blood Th9 cells and eosinophil apoptosis in asthma patients. Medicina 51(1):10–17PubMedCrossRefGoogle Scholar
  57. 57.
    Finotto S (2018) B lymphocyte-induced maturation protein 1 (Blimp-1), a negative regulator of TH9 development, orchestrates the resolution of airway inflammation in patients with allergic asthma. J Allergy Clin ImmunolGoogle Scholar
  58. 58.
    Erpenbeck VJ, Hohlfeld JM, Volkmann B, Hagenberg A, Geldmacher H, Braun A, Krug N (2003) Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J Allergy Clin Immunol 111(6):1319–1327PubMedCrossRefGoogle Scholar
  59. 59.
    Abdelilah S, Latifa K, Esra N, Cameron L, Bouchaib L, Nicolaides N, Levitt R, Hamid Q (2001) Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. J Immunol 166(4):2768–2774PubMedCrossRefGoogle Scholar
  60. 60.
    Bhathena PR, Comhair SA, Holroyd KJ, Erzurum SC (2000) Interleukin-9 receptor expression in asthmatic airways In vivo. Lung 178(3):149–160PubMedCrossRefGoogle Scholar
  61. 61.
    Cheng G, Arima M, Honda K, Hirata H, Eda F, Yoshida N, Fukushima F, Ishii Y, Fukuda T (2002) Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med 166(3):409–416PubMedCrossRefGoogle Scholar
  62. 62.
    Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, Nicolaides NC, Holroyd KJ, Tsicopoulos A, Lafitte JJ, Wallaert B, Hamid QA (2000) IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol 105(1 Pt 1):108–115PubMedCrossRefGoogle Scholar
  63. 63.
    Toda M, Tulic MK, Levitt RC, Hamid Q (2002) A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J Allergy Clin Immunol 109(2):246–250PubMedCrossRefGoogle Scholar
  64. 64.
    Oh CK, Leigh R, McLaurin KK, Kim K, Hultquist M, Molfino NA (2013) A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir Res 14:93PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rubner FJ, Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Pappas TE, Gern JE, Lemanske RF Jr (2017) Early life rhinovirus wheezing, allergic sensitization, and asthma risk at adolescence. J Allergy Clin Immunol 139(2):501–507PubMedCrossRefGoogle Scholar
  66. 66.
    Bergauer A, Sopel N, Kross B, Vuorinen T, Xepapadaki P, Weiss ST, Blau A, Sharma H, Kraus C, Springel R, Rauh M, Mittler S, Graser A, Zimmermann T, Melichar VO, Kiefer A, Kowalski ML, Sobanska A, Jartti T, Lukkarinen H, Papadopoulos NG, Finotto S (2017) Rhinovirus species/genotypes and interferon-lambda: subtypes, receptor and polymorphisms - missing pieces of the puzzle of childhood asthma? Eur Respir J 49(3)PubMedCrossRefGoogle Scholar
  67. 67.
    Hansel TT, Tunstall T, Trujillo-Torralbo MB, Shamji B, del-Rosario A, Dhariwal J, Kirk PDW, Stumpf MPH, Koopmann J, Telcian A, Aniscenko J, Gogsadze L, Bakhsoliani E, Stanciu L, Bartlett N, Edwards M, Walton R, Mallia P, Hunt TM, Hunt TL, Hunt DG, Westwick J, Edwards M, Kon OM, Jackson DJ, Johnston SL (2017) A Comprehensive evaluation of nasal and bronchial cytokines and chemokines following experimental rhinovirus infection in allergic asthma: increased interferons (IFN-gamma and IFN-lambda) and type 2 inflammation (IL-5 and IL-13). EBioMedicine 19:128–138PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sykes A, Macintyre J, Edwards MR, Del Rosario A, Haas J, Gielen V, Kon OM, McHale M, Johnston SL (2014) Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 69(3):240–246PubMedCrossRefGoogle Scholar
  69. 69.
    Bielor C, Sopel N, Maier A, Blau A, Sharma H, Vuorinen T, Kross B, Mittler S, Graser A, Mousset S, Melichar VO, Kiefer A, Zimmermann T, Springel R, Holzinger C, Trump S, Taka S, Papadopoulos NG, Weiss ST, Finotto S (2017) Role of TGF-beta in anti-rhinovirus immune responses in asthmatic patients. J Allergy Clin Immunol 140(1):283–286 e10PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Usui T, Nishikomori R, Kitani A, Strober W (2003) GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 18(3):415–428PubMedCrossRefGoogle Scholar
  71. 71.
    Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S, Hu G, Guo L, Yagi R, Yamane H, Punkosdy G, Feigenbaum L, Zhao K, Paul WE (2012) The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37(4):660–673PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669PubMedCrossRefGoogle Scholar
  73. 73.
    Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, Bhan A, Autschbach F, Sullivan BM, Szabo SJ, Glimcher LH, Blumberg RS (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 195(9):1129–1143PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ, Drazen JM, De Sanctis GT, Glimcher LH (2002) Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295(5553):336–338PubMedCrossRefGoogle Scholar
  75. 75.
    Liu X, Li S, Jin J, Zhu T, Xu K, Liu C, Zeng Y, Mao R, Wang X, Chen Z (2019) Preventative tracheal administration of interleukin-27 attenuates allergic asthma by improving the lung Th1 microenvironment. J Cell Physiol 234(5):6642–6653PubMedCrossRefGoogle Scholar
  76. 76.
    Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG (2016) The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin Ther Targets 20(11):1339–1356PubMedCrossRefGoogle Scholar
  77. 77.
    Reppert S, Boross I, Koslowski M, Tureci O, Koch S, Lehr HA, Finotto S (2011) A role for T-bet-mediated tumour immune surveillance in anti-IL-17A treatment of lung cancer. Nat Commun 2:600PubMedCrossRefGoogle Scholar
  78. 78.
    Xu L, Sun WJ, Jia AJ, Qiu LL, Xiao B, Mu L, Li JM, Zhang XF, Wei Y, Peng C, Zhang DS, Xiang XD (2018) MBD2 regulates differentiation and function of Th17 cells in neutrophils- dominant asthma via HIF-1alpha. J Inflamm 15:15CrossRefGoogle Scholar
  79. 79.
    Vroman H, Bergen IM, van Hulst JAC, van Nimwegen M, van Uden D, Schuijs MJ, Pillai SY, van Loo G, Hammad H, Lambrecht BN, Hendriks RW, Kool M (2018) TNF-alpha-induced protein 3 levels in lung dendritic cells instruct TH2 or TH17 cell differentiation in eosinophilic or neutrophilic asthma. 141(5):1620–J Allergy Clin Immunol, 1633 e12Google Scholar
  80. 80.
    Wang L, Wan H, Tang W, Ni Y, Hou X, Pan L, Song Y, Shi G (2018) Critical roles of adenosine A2A receptor in regulating the balance of Treg/Th17 cells in allergic asthma. Clin Respir J 12(1):149–157PubMedCrossRefGoogle Scholar
  81. 81.
    Guan Q, Yang B, Warrington RJ, Mink S, Kalicinsky C, Becker AB, Simons E, Peng Z (2019) Myeloid-derived suppressor cells: roles and relations with Th2, Th17, and Treg cells in asthma. AllergyGoogle Scholar
  82. 82.
    Ramakrishnan RK, Al Heialy S, Hamid Q (2019) Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med:1–12Google Scholar
  83. 83.
    Quan-San Z, Xiaohong X, Ying L, Zhaojia S (2019) Role of Th17-cell related cytokines in geriatric asthma. J Int Med Res 47(2):580–590PubMedCrossRefGoogle Scholar
  84. 84.
    Zou XL, Chen ZG, Zhang TT, Feng DY, Li HT, Yang HL (2018) Th17/Treg homeostasis, but not Th1/Th2 homeostasis, is implicated in exacerbation of human bronchial asthma. Ther Clin Risk Manag 14:1627–1636PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Massague J, Attisano L, Wrana JL (1994) The TGF-beta family and its composite receptors. Trends Cell Biol 4(5):172–178PubMedCrossRefGoogle Scholar
  86. 86.
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326(5955):986–991PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    DeVries A, Vercelli D (2018) Of pleiotropy and trajectories: Does the TGF-beta pathway link childhood asthma and chronic obstructive pulmonary disease? J Allergy Clin Immunol 141(6):1992–1996PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Branchett WJ, Stolting H, Oliver RA, Walker SA, Puttur F, Gregory LG, Gabrysova L, Wilson MS, O'Garra A, Lloyd CM (2019) A T cell-myeloid IL-10 axis regulates pathogenic IFN-gamma-dependent immunity in a mouse model of type 2-low asthma. J Allergy Clin ImmunolGoogle Scholar
  89. 89.
    Zonoobi E, Saeedfar K, Pourdowlat G, Masjedi MR, Behmanesh M (2018) The study of IL-10 and IL-17A genes expression in patients with different stages of asthma: a case-control study. Tanaffos 17(3):146–154PubMedPubMedCentralGoogle Scholar
  90. 90.
    Paw M, Wnuk D, Kadziolka D, Sek A, Lasota S, Czyz J, Madeja Z, Michalik M (2018) Fenofibrate reduces the asthma-related fibroblast-to-myofibroblast transition by TGF-beta/Smad2/3 signaling attenuation and connexin 43-dependent phenotype destabilization. Int J Mol Sci 19(9)PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Chen S, Han Y, Chen H, Wu J, Zhang M (2018) Bcl11b regulates IL-17 through the TGF-beta/Smad pathway in HDM-induced asthma. Allergy, Asthma Immunol Res 10(5):543–554CrossRefGoogle Scholar
  92. 92.
    Haspeslagh E, Vanheerswynghels M, Deswarte K, Van Moorleghem J, Jacquet A, Lambrecht BN, Hammad H (2019) Prophylactic allergen immunotherapy with Der p 2 prevents murine asthma by regulating lung GM-CSF. J Allergy Clin Immunol 143(6):2307–2311 e5PubMedCrossRefGoogle Scholar
  93. 93.
    Bohm L, Maxeiner J, Meyer-Martin H, Reuter S, Finotto S, Klein M, Schild H, Schmitt E, Bopp T, Taube C (2015) IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. J Immunol 194(3):887–897PubMedCrossRefGoogle Scholar
  94. 94.
    Asamoah F, Kakourou A, Dhami S, Lau S, Agache I, Muraro A, Roberts G, Akdis C, Bonini M, Cavkaytar O, Flood B, Izuhara K, Jutel M, Kalayci O, Pfaar O, Sheikh A (2017) Allergen immunotherapy for allergic asthma: a systematic overview of systematic reviews. Clin Transl Allergy 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dhami S, Kakourou A, Asamoah F, Agache I, Lau S, Jutel M, Muraro A, Roberts G, Akdis CA, Bonini M, Cavkaytar O, Flood B, Gajdanowicz P, Izuhara K, Kalayci O, Mosges R, Palomares O, Pfaar O, Smolinska S, Sokolowska M, Asaria M, Netuveli G, Zaman H, Akhlaq A, Sheikh A (2017) Allergen immunotherapy for allergic asthma: a systematic review and meta-analysis. Allergy 72(12):1825–1848PubMedCrossRefGoogle Scholar
  96. 96.
    MacDonald KM, Kavati A, Ortiz B, Alhossan A, Lee CS, Abraham I (2019) Short- and long-term real-world effectiveness of omalizumab in severe allergic asthma: systematic review of 42 studies published 2008-2018. Expert Rev Clin Immunol 15(5):553–569PubMedCrossRefGoogle Scholar
  97. 97.
    Nishima S, Kozawa M, Milligan KL, Papadopoulos NG (2019) Omalizumab and unmet needs in severe asthma and allergic comorbidities in Japanese children. Asia Pac Allergy 9(1):e7PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Deschildre A, Roussel J, Drumez E, Abou-Taam R, Rames C, Le Roux P, Pouessel G, Scalbert M, Bonnel C, Mitha S, Boileau S, Mordacq C, Thumerelle C, Labreuche J, Lejeune S, Marguet C (2019) Omalizumab discontinuation in children with severe allergic asthma: an observational real-life study. Allergy 74(5):999–1003PubMedCrossRefGoogle Scholar
  99. 99.
    Fiocchi A, Artesani MC, Riccardi C, Mennini M, Pecora V, Fierro V, Calandrelli V, Dahdah L, Valluzzi RL (2019) Impact of omalizumab on food allergy in patients treated for asthma: a real-life study. J Allergy Clin Immunol Pract 7(6):1901–1909 e5PubMedCrossRefGoogle Scholar
  100. 100.
    Weir E, Paton J (2019) Mepolizumab in adolescents with severe eosinophilic asthma not eligible for omalizumab: one center’s early clinical experience. J Asthma 22:1–4CrossRefGoogle Scholar
  101. 101.
    Davila Gonzalez I, Moreno Benitez F, Quirce S (2019) Benralizumab: a new approach for the treatment of severe eosinophilic asthma. J Investig Allergol Clin Immunol 29(2):84–93PubMedCrossRefGoogle Scholar
  102. 102.
    Chupp G, Lugogo NL, Kline JN, Ferguson GT, Hirsch I, Goldman M, Zangrilli JG, Trudo F (2019) Rapid onset of effect of benralizumab on morning peak expiratory flow in severe, uncontrolled asthma. Ann Allergy Asthma Immunol 122(5):478–485PubMedCrossRefGoogle Scholar
  103. 103.
    Minami D, Kayatani H, Sato K, Fujiwara K, Shibayama T (2019) Effectiveness of benralizumab for allergic and eosinophilic predominant asthma following negative initial results with omalizumab. Respirol Case Rep 7(1):e00388PubMedGoogle Scholar
  104. 104.
    Busse WW, Bleecker ER, FitzGerald JM, Ferguson GT, Barker P, Sproule S, Olsson RF, Martin UJ, Goldman M, B.s. investigators (2019) Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir Med 7(1):46–59PubMedCrossRefGoogle Scholar
  105. 105.
    Zayed Y, Kheiri B, Banifadel M, Hicks M, Aburahma A, Hamid K, Bachuwa G, Chandran A (2018) Dupilumab safety and efficacy in uncontrolled asthma: a systematic review and meta-analysis of randomized clinical trials. J Asthma 1:1–10Google Scholar
  106. 106.
    Corren J, Castro M, Chanez P, Fabbri L, Joish VN, Amin N, Graham NMH, Mastey V, Abbe A, Taniou C, Mahajan P, Teper A, Pirozzi G, Eckert L (2019) Dupilumab improves symptoms, quality of life, and productivity in uncontrolled persistent asthma. Ann Allergy Asthma Immunol 122(1):41–49 e2PubMedCrossRefGoogle Scholar
  107. 107.
    Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L, Zhu H, Hamilton JD, Swanson BN, Khan A, Chao J, Staudinger H, Pirozzi G, Antoni C, Amin N, Ruddy M, Akinlade B, Graham NMH, Stahl N, Yancopoulos GD, Teper A (2018) Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med 378(26):2475–2485PubMedCrossRefGoogle Scholar
  108. 108.
    Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, Katelaris C, Tohda Y, Zhang B, Staudinger H, Pirozzi G, Amin N, Ruddy M, Akinlade B, Khan A, Chao J, Martincova R, Graham NMH, Hamilton JD, Swanson BN, Stahl N, Yancopoulos GD, Teper A (2018) Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 378(26):2486–2496PubMedCrossRefGoogle Scholar
  109. 109.
    Busse WW, Maspero JF, Rabe KF, Papi A, Wenzel SE, Ford LB, Pavord ID, Zhang B, Staudinger H, Pirozzi G, Amin N, Akinlade B, Eckert L, Chao J, Graham NMH, Teper A (2018) Liberty asthma QUEST: phase 3 randomized, double-blind, placebo-controlled, parallel-group study to evaluate Dupilumab efficacy/safety in patients with uncontrolled, moderate-to-severe asthma. Adv Ther 35(5):737–748PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Weinstein SF, Katial R, Jayawardena S, Pirozzi G, Staudinger H, Eckert L, Joish VN, Amin N, Maroni J, Rowe P, Graham NMH, Teper A (2018) Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol 142(1):171–177 e1PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular PneumologyUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations