Advertisement

Resolution of neuroinflammation: mechanisms and potential therapeutic option

  • Nikolaos Dokalis
  • Marco PrinzEmail author
Review
  • 3 Downloads

Abstract

The central nervous system (CNS) is comprised by an elaborate neural network that is under constant surveillance by tissue-intrinsic factors for maintenance of its homeostasis. Invading pathogens or sterile injuries might compromise vitally the CNS integrity and function. A prompt anti-inflammatory response is therefore essential to contain and repair the local tissue damage. Although the origin of the insults might be different, the principles of tissue backlashes, however, share striking similarities. CNS-resident cells, such as microglia and astrocytes, together with peripheral immune cells orchestrate an array of events that aim to functional restoration. If the acute inflammatory event remains unresolved, it becomes toxic leading to progressive CNS degeneration. Therefore, the cellular, molecular, and biochemical processes that regulate inflammation need to be on a fine balance with the intrinsic CNS repair mechanisms that influence tissue healing. The purpose of this review is to highlight aspects that facilitate the resolution of CNS inflammation, promote tissue repair, and functional recovery after acute injury and infection that could potentially contribute as therapeutic interventions.

Keywords

Resolution of neuroinflammation CNS infection Traumatic brain injury Spinal cord injury Ischemic stroke 

Notes

Funding information

MP is supported by the Sobek Foundation, the Ernst-Jung Foundation, the German Research Foundation (SFB 992, SFB/TRR167, SFB1160, Reinhart-Koselleck-Grant). This study was supported by the German Research Foundation (DFG) under Germany’s Excellence Strategy (CIBSS – EXC-2189 – Project ID 390939984).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Creagh EM, O’Neill LAJ (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357.  https://doi.org/10.1016/j.it.2006.06.003 CrossRefPubMedGoogle Scholar
  2. 2.
    Hoving JC, Wilson GJ, Brown GD (2014) Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol 16:185–194.  https://doi.org/10.1111/cmi.12249 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820.  https://doi.org/10.1016/j.cell.2010.01.022 CrossRefPubMedGoogle Scholar
  4. 4.
    Serhan CN, Chiang N, Dalli J (2015) The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol 27:200–215.  https://doi.org/10.1016/J.SMIM.2015.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Basil MC, Levy BD (2016) Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 16:51–67.  https://doi.org/10.1038/nri.2015.4 CrossRefPubMedGoogle Scholar
  6. 6.
    Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14.  https://doi.org/10.1186/1742-2094-1-14 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312.  https://doi.org/10.1038/nrn3722 CrossRefPubMedGoogle Scholar
  8. 8.
    Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37:608–620.  https://doi.org/10.1016/j.it.2016.06.006 CrossRefPubMedGoogle Scholar
  9. 9.
    Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9:481–493.  https://doi.org/10.1038/nrn2398 CrossRefPubMedGoogle Scholar
  10. 10.
    Moynagh PN (2005) TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol 26:469–476.  https://doi.org/10.1016/j.it.2005.06.009 CrossRefPubMedGoogle Scholar
  11. 11.
    van den Pol AN, Ding S, Robek MD (2014) Long-distance interferon signaling within the brain blocks virus spread. J Virol 88:3695–3704.  https://doi.org/10.1128/JVI.03509-13 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guo H, Callaway JB, Ting JP-Y (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687.  https://doi.org/10.1038/nm.3893 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hanamsagar R, Aldrich A, Kielian T (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 129:704–711.  https://doi.org/10.1111/jnc.12669 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Terry RL, Getts DR, Deffrasnes C, van Vreden C, Campbell IL, King NJC (2012) Inflammatory monocytes and the pathogenesis of viral encephalitis. J Neuroinflammation 9:776–710.  https://doi.org/10.1186/1742-2094-9-270 CrossRefGoogle Scholar
  15. 15.
    Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA (2019) Herpes simplex virus type 1 infection of the central nervous system: insights into proposed interrelationships with neurodegenerative disorders. Front Cell Neurosci 13:46.  https://doi.org/10.3389/fncel.2019.00046 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    McCandless EE, Zhang B, Diamond MS, Klein RS (2008) CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc Natl Acad Sci USA 105:11270–11275.  https://doi.org/10.1073/pnas.0800898105 CrossRefPubMedGoogle Scholar
  17. 17.
    Potokar M, Jorgačevski J, Zorec R (2019) Astrocytes in Flavivirus infections. Int J Mol Sci 20.  https://doi.org/10.3390/ijms20030691 CrossRefGoogle Scholar
  18. 18.
    Shrestha B, Pinto AK, Green S, Bosch I, Diamond MS (2012) CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J Virol 86:8937–8948.  https://doi.org/10.1128/JVI.00673-12 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Guidotti LG, Chisari FV (2003) Noncytolytic control of viral infections by the innate and adaptive immune response.  https://doi.org/10.1146/annurev.immunol19165
  20. 20.
    Kim JV, Kang SS, Dustin ML, McGavern DB (2009) Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–195.  https://doi.org/10.1038/nature07591 CrossRefPubMedGoogle Scholar
  21. 21.
    Herz J, Johnson KR, McGavern DB (2015) Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med 212:1153–1169.  https://doi.org/10.1084/jem.20142047 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sitati EM, Diamond MS (2006) CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80:12060–12069.  https://doi.org/10.1128/JVI.01650-06 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lanteri MC, O’Brien KM, Purtha WE et al (2009) Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest 119:3266–3277.  https://doi.org/10.1172/JCI39387 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu GF, Dandekar AA, Pewe L et al (2000) CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J Immunol 165:2278–2286.  https://doi.org/10.4049/jimmunol.165.4.2278 CrossRefPubMedGoogle Scholar
  25. 25.
    Phares TW, Stohlman SA, Hwang M, Min B, Hinton DR, Bergmann CC (2012) CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J Virol 86:2416–2427.  https://doi.org/10.1128/JVI.06797-11 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cervantes-Barragán L, Firner S, Bechmann I et al (2012) Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection. J Immunol 188:3678–3685.  https://doi.org/10.4049/jimmunol.1102422 CrossRefPubMedGoogle Scholar
  27. 27.
    Trandem K, Anghelina D, Zhao J, Perlman S (2010) Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. J Immunol 184:4391–4400.  https://doi.org/10.4049/jimmunol.0903918 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Carbajal KS, Miranda JL, Tsukamoto MR, Lane TE (2011) CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia 59:1813–1821.  https://doi.org/10.1002/glia.21225 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Genis P, Jett M, Bernton EW, Boyle T, Gelbard HA, Dzenko K, Keane RW, Resnick L, Mizrachi Y, Volsky DJ (1992) Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 176:1703–1718.  https://doi.org/10.1084/jem.176.6.1703 CrossRefPubMedGoogle Scholar
  30. 30.
    Aliberti J, Hieny S, Reis e Sousa C et al (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 3:76–82.  https://doi.org/10.1038/ni745 CrossRefPubMedGoogle Scholar
  31. 31.
    Shryock N, McBerry C, Salazar Gonzalez RM et al (2013) Lipoxin A4 and 15-Epi-Lipoxin A4 protect against experimental cerebral malaria by inhibiting IL-12/IFN-γ in the brain. PLoS One 8:e61882.  https://doi.org/10.1371/journal.pone.0061882 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mai NT, Dobbs N, Phu NH et al (2018) A randomised double blind placebo controlled phase 2 trial of adjunctive aspirin for tuberculous meningitis in HIV-uninfected adults. Elife 7.  https://doi.org/10.7554/eLife.33478
  33. 33.
    Prinz M, Erny D, Hagemeyer N (2017) Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18:385–392.  https://doi.org/10.1038/ni.3703 CrossRefPubMedGoogle Scholar
  34. 34.
    Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553.  https://doi.org/10.1038/nn2015 CrossRefPubMedGoogle Scholar
  35. 35.
    Tay TL, Mai D, Dautzenberg J et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803.  https://doi.org/10.1038/nn.4547 CrossRefPubMedGoogle Scholar
  36. 36.
    Villacampa N, Almolda B, Vilella A, Campbell IL, González B, Castellano B (2015) Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy. Glia 63:1166–1184.  https://doi.org/10.1002/glia.22807 CrossRefPubMedGoogle Scholar
  37. 37.
    Osier ND, Carlson SW, DeSana A, Dixon CE (2015) Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 32:1861–1882.  https://doi.org/10.1089/neu.2014.3680 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 72:355.  https://doi.org/10.1001/jamaneurol.2014.3558 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789.  https://doi.org/10.1189/jlb.1109766 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG (2007) Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem 102:37–50.  https://doi.org/10.1111/j.1471-4159.2007.04524.x CrossRefPubMedGoogle Scholar
  41. 41.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758.  https://doi.org/10.1038/nn1472 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern D (2014) Transcranial amelioration of inflammation and cell death after brain injury. Nature 505:223–228.  https://doi.org/10.1038/nature12808 CrossRefPubMedGoogle Scholar
  43. 43.
    Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142.  https://doi.org/10.1038/nrn3407 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191.  https://doi.org/10.1038/nrneurol.2017.13 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sandhir R, Puri V, Klein RM, Berman NEJ (2004) Differential expression of cytokines and chemokines during secondary neuron death following brain injury in old and young mice. Neurosci Lett 369:28–32.  https://doi.org/10.1016/J.NEULET.2004.07.032 CrossRefPubMedGoogle Scholar
  46. 46.
    Chu HX, Arumugam TV, Gelderblom M, Magnus T, Drummond GR, Sobey CG (2014) Role of CCR2 in inflammatory conditions of the central nervous system. J Cereb Blood Flow Metab 34:1425–1429.  https://doi.org/10.1038/jcbfm.2014.120 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP (2014) Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry 76:575–584.  https://doi.org/10.1016/j.biopsych.2013.10.014 CrossRefPubMedGoogle Scholar
  48. 48.
    d’Avila JC, Lam TI, Bingham D, Shi J, Won SJ, Kauppinen TM, Massa S, Liu J, Swanson RA (2012) Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J Neuroinflammation 9:521–511.  https://doi.org/10.1186/1742-2094-9-31 CrossRefGoogle Scholar
  49. 49.
    Shinozaki Y, Shibata K, Ikenaka K et al (2017) Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y 1 receptor downregulation. Cell Rep 19:1151–1164.  https://doi.org/10.1016/j.celrep.2017.04.047 CrossRefPubMedGoogle Scholar
  50. 50.
    Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886.  https://doi.org/10.1523/JNEUROSCI.2121-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Blixt J, Svensson M, Gunnarson E, Wanecek M (2015) Aquaporins and blood–brain barrier permeability in early edema development after traumatic brain injury. Brain Res 1611:18–28.  https://doi.org/10.1016/J.BRAINRES.2015.03.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233.  https://doi.org/10.1523/JNEUROSCI.15-12-08223.1995 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hsieh CL, Kim CC, Ryba BE, Niemi EC, Bando JK, Locksley RM, Liu J, Nakamura MC, Seaman WE (2013) Traumatic brain injury induces macrophage subsets in the brain. Eur J Immunol 43:2010–2022.  https://doi.org/10.1002/eji.201243084 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Morganti JM, Jopson TD, Liu S, Riparip LK, Guandique CK, Gupta N, Ferguson AR, Rosi S (2015) CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J Neurosci 35:748–760.  https://doi.org/10.1523/JNEUROSCI.2405-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75.  https://doi.org/10.1016/j.neuroscience.2012.08.058 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Loane DJ, Kumar A, Stoica BA et al (2014) Progressive neurodegeneration after experimental brain trauma. J Neuropathol Exp Neurol 73:14–29.  https://doi.org/10.1097/NEN.0000000000000021 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang G, Zhang J, Hu X et al (2013) Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab 33:1864–1874.  https://doi.org/10.1038/jcbfm.2013.146 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Turtzo L, Lescher J, Janes L, Dean DD, Budde MD, Frank JA (2014) Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflammation 11:82.  https://doi.org/10.1186/1742-2094-11-82 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T (2012) Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS One 7:e41892.  https://doi.org/10.1371/journal.pone.0041892 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dai S-S, Zhou Y-G, Li W, An JH, Li P, Yang N, Chen XY, Xiong RP, Liu P, Zhao Y, Shen HY, Zhu PF, Chen JF (2010) Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 30:5802–5810.  https://doi.org/10.1523/JNEUROSCI.0268-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Myer DJ, Gurkoff GG, Lee SM et al (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772.  https://doi.org/10.1093/brain/awl165 CrossRefPubMedGoogle Scholar
  62. 62.
    Penkowa M, Giralt M, Lago N, Camats J, Carrasco J, Hernández J, Molinero A, Campbell IL, Hidalgo J (2003) Astrocyte-targeted expression of IL-6 protects the CNSagainst a focal brain injury. Exp Neurol 181:130–148.  https://doi.org/10.1016/S0014-4886(02)00051-1 CrossRefPubMedGoogle Scholar
  63. 63.
    Bye N, Carron S, Han X, Agyapomaa D, Ng SY, Yan E, Rosenfeld JV, Morganti-Kossmann MC (2011) Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. J Neurosci Res 89:986–1000.  https://doi.org/10.1002/jnr.22635 CrossRefPubMedGoogle Scholar
  64. 64.
    Ngwenya LB, Danzer SC (2018) Impact of traumatic brain injury on neurogenesis. Front Neurosci 12:1014.  https://doi.org/10.3389/fnins.2018.01014 CrossRefPubMedGoogle Scholar
  65. 65.
    Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE (2014) Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol 73:734–746.  https://doi.org/10.1097/NEN.0000000000000092 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Madathil SK, Carlson SW, Brelsfoard JM, Ye P, D’Ercole AJ, Saatman KE (2013) Astrocyte-specific overexpression of insulin-like growth Factor-1 protects hippocampal neurons and reduces behavioral deficits following traumatic brain injury in mice. PLoS One 8:e67204.  https://doi.org/10.1371/journal.pone.0067204 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Piao C-S, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, Loane DJ, Faden AI (2013) Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis 54:252–263.  https://doi.org/10.1016/j.nbd.2012.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Harrison JL, Rowe RK, Ellis TW, Yee NS, O’Hara BF, Adelson PD, Lifshitz J (2015) Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav Immun 47:131–140.  https://doi.org/10.1016/J.BBI.2015.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Vanden BRW, Davidsson J, Lidin E et al (2019) Brain tissue saving effects by single-dose intralesional administration of neuroprotectin D1 on experimental focal penetrating brain injury in rats. J Clin Neurosci 64:227–233.  https://doi.org/10.1016/J.JOCN.2019.03.032 CrossRefGoogle Scholar
  70. 70.
    Luo C-L, Li Q-Q, Chen X-P, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY (2013) Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 1502:1–10.  https://doi.org/10.1016/J.BRAINRES.2013.01.037 CrossRefPubMedGoogle Scholar
  71. 71.
    Lewis MD (2016) Concussions, traumatic brain injury, and the innovative use of omega-3s. J Am Coll Nutr 35:469–475.  https://doi.org/10.1080/07315724.2016.1150796 CrossRefPubMedGoogle Scholar
  72. 72.
    Yang L, Jones NR, Blumbergs PC, van den Heuvel C, Moore EJ, Manavis J, Sarvestani GT, Ghabriel MN (2005) Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat. J Clin Neurosci 12:276–284.  https://doi.org/10.1016/J.JOCN.2004.06.011 CrossRefPubMedGoogle Scholar
  73. 73.
    Bastien D, Bellver Landete V, Lessard M, Vallières N, Champagne M, Takashima A, Tremblay MÈ, Doyon Y, Lacroix S (2015) IL-1α gene deletion protects oligodendrocytes after spinal cord injury through upregulation of the survival factor Tox3. J Neurosci 35:10715–10730.  https://doi.org/10.1523/JNEUROSCI.0498-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hansen CN, Fisher LC, Deibert RJ, Jakeman LB, Zhang H, Noble-Haeusslein L, White S, Basso DM (2013) Elevated MMP-9 in the lumbar cord early after thoracic spinal cord injury impedes motor relearning in mice. J Neurosci 33:13101–13111.  https://doi.org/10.1523/JNEUROSCI.1576-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569.  https://doi.org/10.1016/j.immuni.2013.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Raposo C, Graubardt N, Cohen M, Eitan C, London A, Berkutzki T, Schwartz M (2014) CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci 34:10141–10155.  https://doi.org/10.1523/JNEUROSCI.0076-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Walsh JT, Hendrix S, Boato F, Smirnov I, Zheng J, Lukens JR, Gadani S, Hechler D, Gölz G, Rosenberger K, Kammertöns T, Vogt J, Vogelaar C, Siffrin V, Radjavi A, Fernandez-Castaneda A, Gaultier A, Gold R, Kanneganti TD, Nitsch R, Zipp F, Kipnis J (2015) MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J Clin Invest 125:699–714.  https://doi.org/10.1172/JCI76210 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–1116.  https://doi.org/10.1016/j.neuron.2014.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Paterniti I, Melani A, Cipriani S, Corti F, Mello T, Mazzon E, Esposito E, Bramanti P, Cuzzocrea S, Pedata F (2011) Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J Neuroinflammation 8:31.  https://doi.org/10.1186/1742-2094-8-31 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155.  https://doi.org/10.1523/JNEUROSCI.3547-03.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Herrmann JE, Imura T, Song B et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243.  https://doi.org/10.1523/JNEUROSCI.1709-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wang H-F, Liu X-K, Li R, Zhang P, Chu Z, Wang CL, Liu HR, Qi J, Lv GY, Wang GY, Liu B, Li Y, Wang YY (2017) Effect of glial cells on remyelination after spinal cord injury. Neural Regen Res 12:1724–1732.  https://doi.org/10.4103/1673-5374.217354 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Dias DO, Kim H, Holl D et al (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173:153–165.e22.  https://doi.org/10.1016/j.cell.2018.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D (2018) Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136:507–523.  https://doi.org/10.1007/s00401-018-1893-0 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Martini AC, Berta T, Forner S, Chen G, Bento AF, Ji RR, Rae GA (2016) Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. J Neuroinflammation 13:75.  https://doi.org/10.1186/s12974-016-0540-8 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lu T, Wu X, Wei N, Liu X, Zhou Y, Shang C, Duan Y, Dong Y (2018) Lipoxin A4 protects against spinal cord injury via regulating Akt/nuclear factor (erythroid-derived 2)-like 2/heme oxygenase-1 signaling. Biomed Pharmacother 97:905–910.  https://doi.org/10.1016/J.BIOPHA.2017.10.092 CrossRefPubMedGoogle Scholar
  87. 87.
    Francos-Quijorna I, Santos-Nogueira E, Gronert K, Sullivan AB, Kopp MA, Brommer B, David S, Schwab JM, López-Vales R (2017) Maresin 1 promotes inflammatory resolution, neuroprotection, and functional neurological recovery after spinal cord injury. J Neurosci 37:11731–11743.  https://doi.org/10.1523/JNEUROSCI.1395-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Maeda A, Fadeel B (2014) Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis 5:e1312–e1312.  https://doi.org/10.1038/cddis.2014.277 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C (2010) Key role of CD36 in toll-like receptor 2 signaling in cerebral ischemia. Stroke 41:898–904.  https://doi.org/10.1161/STROKEAHA.109.572552 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28:927–938.  https://doi.org/10.1038/sj.jcbfm.9600582 CrossRefPubMedGoogle Scholar
  91. 91.
    Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18:911–917.  https://doi.org/10.1038/nm.2749 CrossRefPubMedGoogle Scholar
  92. 92.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198.  https://doi.org/10.1016/j.neuron.2010.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5:73–90PubMedPubMedCentralGoogle Scholar
  94. 94.
    Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, Császár E, Fekete R, West BL, Katona G, Rózsa B, Dénes Á (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499.  https://doi.org/10.1038/ncomms11499 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298.  https://doi.org/10.1002/glia.20181 CrossRefPubMedGoogle Scholar
  96. 96.
    Rosell A, Cuadrado E, Ortega-Aznar A et al (2008) MMP-9–positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126.  https://doi.org/10.1161/STROKEAHA.107.500868 CrossRefPubMedGoogle Scholar
  97. 97.
    Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, Anrather J (2014) Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol 193:2531–2537.  https://doi.org/10.4049/JIMMUNOL.1400918 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, Prinz V, Dirnagl U, Endres M, Prinz M, Beschorner R, Harter PN, Mittelbronn M, Engelhardt B, Sorokin L (2013) The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 125:395–412.  https://doi.org/10.1007/s00401-012-1076-3 CrossRefPubMedGoogle Scholar
  99. 99.
    Gliem M, Mausberg AK, Lee J-I, Simiantonakis I, van Rooijen N, Hartung HP, Jander S (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71:743–752.  https://doi.org/10.1002/ana.23529 CrossRefPubMedGoogle Scholar
  100. 100.
    Hum PD, Subramanian S, Parker SM et al (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805.  https://doi.org/10.1038/sj.jcbfm.9600482 CrossRefGoogle Scholar
  101. 101.
    Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17–producing γδT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950.  https://doi.org/10.1038/nm.1999 CrossRefPubMedGoogle Scholar
  102. 102.
    Liesz A, Zhou W, Na S-Y, Hämmerling GJ, Garbi N, Karcher S, Mracsko E, Backs J, Rivest S, Veltkamp R (2013) Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci 33:17350–17362.  https://doi.org/10.1523/JNEUROSCI.4901-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817.  https://doi.org/10.1074/jbc.M305841200 CrossRefPubMedGoogle Scholar
  104. 104.
    Bazan NG, Eady TN, Khoutorova L, Atkins KD, Hong S, Lu Y, Zhang C, Jun B, Obenaus A, Fredman G, Zhu M, Winkler JW, Petasis NA, Serhan CN, Belayev L (2012) Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp Neurol 236:122–130.  https://doi.org/10.1016/J.EXPNEUROL.2012.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wu Y, Ye X-H, Guo P-P, Xu SP, Wang J, Yuan SY, Yao SL, Shang Y (2010) Neuroprotective effect of Lipoxin A4 methyl ester in a rat model of permanent focal cerebral ischemia. J Mol Neurosci 42:226–234.  https://doi.org/10.1007/s12031-010-9355-8 CrossRefPubMedGoogle Scholar
  106. 106.
    Hawkins KE, DeMars KM, Alexander JC, de Leon LG, Pacheco SC, Graves C, Yang C, McCrea A, Frankowski JC, Garrett TJ, Febo M, Candelario-Jalil E (2017) Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A4 analog: protective mechanisms and long-term effects on neurological recovery. Brain Behav 7:e00688.  https://doi.org/10.1002/brb3.688 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Tanaka K, Ishikawa Y, Yokoyama M et al (2008) Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 39:2052–2058.  https://doi.org/10.1161/STROKEAHA.107.509455 CrossRefPubMedGoogle Scholar
  108. 108.
    Poppitt SD, Howe CA, Lithander FE, Silvers KM, Lin RB, Croft J, Ratnasabapathy Y, Gibson RA, Anderson CS (2009) Effects of moderate-dose omega-3 fish oil on cardiovascular risk factors and mood after ischemic stroke: a randomized, controlled trial. Stroke 40:3485–3492.  https://doi.org/10.1161/STROKEAHA.109.555136 CrossRefPubMedGoogle Scholar
  109. 109.
    Garbagnati F, Cairella G, De Martino A et al (2009) Is antioxidant and n–3 supplementation able to improve functional status in poststroke patients? Results from the Nutristroke Trial. Cerebrovasc Dis 27:375–383.  https://doi.org/10.1159/000207441 CrossRefPubMedGoogle Scholar
  110. 110.
    Lawrence T, Gilroy DW (2006) Chronic inflammation: a failure of resolution? Int J Exp Pathol 88:85–94.  https://doi.org/10.1111/j.1365-2613.2006.00507.x CrossRefGoogle Scholar
  111. 111.
    Prinz M, Priller J (2017) The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 20:136–144.  https://doi.org/10.1038/nn.4475 CrossRefPubMedGoogle Scholar
  112. 112.
    Priller J, Prinz M (2019) Targeting microglia in brain disorders. Science 365(80):32–33.  https://doi.org/10.1126/science.aau9100 CrossRefPubMedGoogle Scholar
  113. 113.
    Kierdorf K, Masuda T, Jordão MJC, Prinz M (2019) Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 20:547–562.  https://doi.org/10.1038/s41583-019-0201-x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Neuropathology, Medical FacultyUniversity of FreiburgFreiburgGermany
  2. 2.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  3. 3.Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
  4. 4.Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations