Seminars in Immunopathology

, Volume 41, Issue 5, pp 573–582 | Cite as

Osteoclastic microRNAs and their translational potential in skeletal diseases

  • Kazuki Inoue
  • Shinichi Nakano
  • Baohong ZhaoEmail author


Skeleton undergoes constant remodeling process to maintain healthy bone mass. However, in pathological conditions, bone remodeling is deregulated, resulting in unbalanced bone resorption and formation. Abnormal osteoclast formation and activation play a key role in osteolysis, such as in rheumatoid arthritis and osteoporosis. As potential therapeutic targets or biomarkers, miRNAs have gained rapidly growing research and clinical attention. miRNA-based therapeutics is recently entering a new era for disease treatment. Such progress is emerging in treatment of skeletal diseases. In this review, we discuss miRNA biogenesis, advances in the strategies for miRNA target identification, important miRNAs involved in osteoclastogenesis and disease models, their regulated mechanisms, and translational potential and challenges in bone homeostasis and related diseases.


Osteoclast microRNA Rheumatoid arthritis 



We thank Courtney Ng for the critical review of this manuscript.

Funding information

This work was supported by grants from the National Institutes of Health (NIH R01 AR068970 and R01 AR071463 to B.Z.).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.


The content of this manuscript is solely the responsibilities of the authors and does not necessarily represent the official views of the NIH.


  1. 1.
    Schett G, Gravallese E (2012) Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8(11):656–664PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Goldring SR, Purdue PE, Crotti TN, Shen Z, Flannery MR, Binder NB, Ross FP, McHugh KP (2013) Bone remodelling in inflammatory arthritis. Ann Rheum Dis 72(Suppl 2):ii52–ii55PubMedCrossRefGoogle Scholar
  3. 3.
    Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development. 132(21):4653–4662PubMedCrossRefGoogle Scholar
  4. 4.
    Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2(4):161–179PubMedPubMedCentralGoogle Scholar
  5. 5.
    Meydan C, Shenhar-Tsarfaty S, Soreq H (2016) MicroRNA regulators of anxiety and metabolic disorders. Trends Mol Med 22(9):798–812PubMedCrossRefGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297CrossRefPubMedGoogle Scholar
  7. 7.
    Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469PubMedCrossRefGoogle Scholar
  8. 8.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5(7):522–531PubMedCrossRefGoogle Scholar
  9. 9.
    Olive V, Minella AC, He L (2015) Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 8(368):re2PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, Mc Curdy DK, Sharma S, Wong D, Hahn BH, Rehimi H (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–1165PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Srinivasan S, Selvan ST, Archunan G, Gulyas B, Padmanabhan P (2013) MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics. 3(12):930–942PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58(4):1001–1009PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science. 294(5543):853–858PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    AJ S, S L, JJ S (2008) al e. MIcrorna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. 299:425–436Google Scholar
  18. 18.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell. 136(2):215–233PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature. 432(7014):235–240PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature. 425(6956):415–419PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science. 303(5654):95–98PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 475(7355):201–205PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436(7051):740–744PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell. 115(7):787–798PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114CrossRefGoogle Scholar
  32. 32.
    Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, Ivashkiv LB, Zhao B (2016) RBP-J-regulated miR-182 promotes TNF-alpha-induced osteoclastogenesis. J Immunol 196(12):4977–4986PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM (2016) Synovium-derived microRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner ResGoogle Scholar
  34. 34.
    Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Gabrielli B, Vlassov A, Cloonan N, Grimmond SM (2013) MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA. 19(2):230–242PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature. 456(7221):464–469PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 141(1):129–141PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 153(3):654–665PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466(7308):835–840PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood. 117:3648–3657PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sugatani T, Hruska KA (2013) Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 114:1217–1222PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H (2013) miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 15(5):R102PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106:7113–7118PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104:1604–1609PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Thai T-H, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science. 316:604–608PubMedCrossRefGoogle Scholar
  46. 46.
    Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KGC, Rada C, Enright AJ, Toellner KM, MacLennan ICM, Turner M (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 27:847–859PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN (2008) MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 28:621–629PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Satoorian T, Li B, Tang X, Xiao J, Xing W, Shi W, Lau K-HW, Baylink DJ, Qin X (2016) MicroRNA223 promotes pathogenic T-cell development and autoimmune inflammation in central nervous system in mice. Immunology. 148:326–338PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lind EF, Millar DG, Dissanayake D, Savage JC, Grimshaw NK, Kerr WG, Ohashi PS (2015) miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J Immunol 195(10):4632–4640PubMedCrossRefGoogle Scholar
  50. 50.
    Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106(8):2735–2740PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mann M, Barad O, Agami R, Geiger B, Hornstein E, Elaine Fuchs b miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate departments of a molecular genetics andGoogle Scholar
  52. 52.
    Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for MicroRNA-223 expression revealed by microRNA gene profiling. Cell. 129:617–631PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Alevizos I, Illei GG (2010) MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol 6:391–398PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, Shiau AL, Wu CL (2012) Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64:3240–3245PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23:674–685PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sugatani T, Hruska KA (2007) MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem 101:996–999PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wu XN, Ye YX, Niu JW, Li Y, Li X, You X, Chen H, Zhao LD, Zeng XF, Zhang FC, Tang FL, He W, Cao XT, Zhang X, Lipsky PE (2014) Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med 6(246):246ra99PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Okkenhaug K, Burger JA (2016) PI3K signaling in normal B cells and chronic lymphocytic leukemia (CLL). Curr Top Microbiol Immunol 393:123–142PubMedPubMedCentralGoogle Scholar
  60. 60.
    Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202(3):345–351PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Maruyama K, Uematsu S, Kondo T, Takeuchi O, Martino MM, Kawasaki T, Akira S (2013) Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med 210(10):1947–1960PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta 1839(11):1084–1096PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    McCubbrey AL, Nelson JD, Stolberg VR, Blakely PK, McCloskey L, Janssen WJ, Freeman CM, Curtis JL (2016) MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J Immunol 196(3):1366–1375PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell. 117(5):663–676PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rodriguez-Ubreva J, Ciudad L, van Oevelen C, Parra M, Graf T, Ballestar E (2014) C/EBPa-mediated activation of microRNAs 34a and 223 inhibits Lef1 expression to achieve efficient reprogramming into macrophages. Mol Cell Biol 34(6):1145–1157PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 512(7515):431–435PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH (2013) MicroRNA-124 regulates osteoclast differentiation. Bone. 56:383–389PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Nakamachi Y, Ohnuma K, Uto K, Noguchi Y, Saegusa J, Kawano S (2016) MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann Rheum Dis 75(3):601–608PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556PubMedCrossRefGoogle Scholar
  71. 71.
    Yang S, Zhang W, Cai M, Zhang Y, Jin F, Yan S, Baloch Z, Fang Z, Xue S, Tang R, Xiao J, Huang Q, Sun Y, Wang X (2018) Suppression of bone resorption by miR-141 in aged rhesus monkeys. J Bone Miner Res 33(10):1799–1812PubMedCrossRefGoogle Scholar
  72. 72.
    Min S, Liang X, Zhang M, Zhang Y, Mei S, Liu J, Liu J, Su X, Cao S, Zhong X, Li Y, Sun J, Liu Q, Jiang X, Che Y, Yang R (2013) Multiple tumor-associated microRNAs modulate the survival and longevity of dendritic cells by targeting YWHAZ and Bcl2 signaling pathways. J Immunol 190(5):2437–2446PubMedCrossRefGoogle Scholar
  73. 73.
    Chen C, Cheng P, Xie H, Zhou HD, Wu XP, Liao EY, Luo XH (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29(2):338–347PubMedCrossRefGoogle Scholar
  74. 74.
    Cao X (2011) Targeting osteoclast-osteoblast communication. Nat Med 17(11):1344–1346PubMedCrossRefGoogle Scholar
  75. 75.
    Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17(11):1473–1480PubMedCrossRefGoogle Scholar
  76. 76.
    Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature. 485(7396):69–74PubMedCrossRefGoogle Scholar
  77. 77.
    Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4(2):111–121PubMedCrossRefGoogle Scholar
  78. 78.
    Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K (2013) Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123(9):3914–3924PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Moverare-Skrtic S, Henning P, Liu X, Nagano K, Saito H, Borjesson AE, Sjogren K, Windahl SH, Farman H, Kindlund B et al (2014) Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20(11):1279–1288PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY, Xu L, Lu C et al (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7(10872)Google Scholar
  82. 82.
    Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DWT, Pan X, Zhang BT, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G (2015) Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med 21(3):288–294PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell. 117(3):387–398PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19(1):93–100PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12(3):343–353PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jindra PT, Bagley J, Godwin JG, Iacomini J (2010) Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten. J Immunol 185(2):990–997PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Buckler JL, Walsh PT, Porrett PM, Choi Y, Turka LA (2006) Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. J Immunol 177(7):4262–4266PubMedCrossRefGoogle Scholar
  88. 88.
    Liu J, Li D, Dang L, Liang C, Guo B, Lu C, He X, Cheung HY, He B, Liu B et al (2017) Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep 7(40487)Google Scholar
  89. 89.
    Dambal S, Shah M, Mihelich B, Nonn L (2015) The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 43(15):7173–7188PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ke K, Sul OJ, Rajasekaran M, Choi HS (2015) MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone. 81:237–246PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Stittrich AB, Haftmann C, Sgouroudis E, Kuhl AA, Hegazy AN, Panse I, Riedel R, Flossdorf M, Dong J, Fuhrmann F et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11(11):1057–1062PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ichiyama K, Gonzalez-Martin A, Kim BS, Jin HY, Jin W, Xu W, Sabouri-Ghomi M, Xu S, Zheng P, Xiao C, Dong C (2016) The microRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity. 44(6):1284–1298PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Inoue K, Deng Z, Chen Y, Giannopoulou E, Xu R, Gong S, Greenblatt MB, Mangala LS, Lopez-Berestein G, Kirsch DG, Sood AK, Zhao L, Zhao B (2018) Bone protection by inhibition of microRNA-182. Nat Commun 9(1):4108PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 146(3):353–358PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147(2):358–369PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 9(4)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kazuki Inoue
    • 1
    • 2
  • Shinichi Nakano
    • 1
  • Baohong Zhao
    • 1
    • 2
    • 3
    Email author
  1. 1.Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkUSA
  2. 2.Department of MedicineWeill Cornell Medical CollegeNew YorkUSA
  3. 3.Graduate Program in Cell & Developmental BiologyWeill Cornell Graduate School of Medical Sciences,New YorkUSA

Personalised recommendations