Seminars in Immunopathology

, Volume 41, Issue 6, pp 727–736 | Cite as

Resolution of uveitis

  • Gerhild WildnerEmail author
  • Maria Diedrichs-Möhring


Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.


Autoimmunity Eye Immune privilege T cells Cytokines Chemokines 



We thank Stephan Thurau for critically reading the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rothova A, Suttorp van Schulten MS, Frits Treffers W, Kijlstra A (1996) Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol 80(4):332–336 Issn: 0007–1161CrossRefGoogle Scholar
  2. 2.
    Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140(3):509–516CrossRefGoogle Scholar
  3. 3.
    Singh VK, Kalra HK, Yamaki K, Abe T, Donoso LA, Shinohara T (1990) Molecular mimicry between a uveitopathogenic site of S-antigen and viral peptides. Induction of experimental autoimmune uveitis in Lewis rats. J Immunol (Baltimore, Md : 1950) 144(4):1282–1287Google Scholar
  4. 4.
    Wildner G, Diedrichs-Möhring M (2003) Autoimmune uveitis induced by molecular mimicry of peptides from rotavirus, bovine casein and retinal S-antigen. Eur J Immunol 33(9):2577–2587. CrossRefPubMedGoogle Scholar
  5. 5.
    Singh VK, Yamaki K, Donoso LA, Shinohara T (1989) Sequence homology between yeast histone H3 and uveitopathogenic site of S-antigen: lymphocyte cross-reaction and adoptive transfer of the disease. Cell Immunol 119(1):211–221CrossRefGoogle Scholar
  6. 6.
    Garip A, Diedrichs-Mohring M, Thurau SR, Deeg CA, Wildner G (2009) Uveitis in a patient treated with Bacille-Calmette-Guerin: possible antigenic mimicry of mycobacterial and retinal antigens. Ophthalmology 116(12):2457–2462.e2451–2452. CrossRefPubMedGoogle Scholar
  7. 7.
    Mochizuki M, Kuwabara T, McAllister C, Nussenblatt RB, Gery I (1985) Adoptive transfer of experimental autoimmune uveoretinitis in rats. Immunopathogenic mechanisms and histologic features. Invest Ophthalmol Vis Sci 26:1):1–1):9PubMedGoogle Scholar
  8. 8.
    Smith JR, Stempel AJ, Bharadwaj A, Appukuttan B (2016) Involvement of B cells in non-infectious uveitis. Clin Transl Immunol 5(2):e63–e63. CrossRefGoogle Scholar
  9. 9.
    Wang R-X, Yu C-R, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, Wingfield PT, Kim S-H, Egwuagu CE (2014) Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 20:633–641. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dambuza IM, He C, Choi JK, Yu C-R, Wang R, Mattapallil MJ, Wingfield PT, Caspi RR, Egwuagu CE (2017) IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nat Commun 8(1):719–719. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Egwuagu CE, Yu C-R (2015) Interleukin 35-producing B cells (i35-Breg): a new mediator of regulatory B-cell functions in CNS autoimmune diseases. Crit Rev Immunol 35(1):49–57CrossRefGoogle Scholar
  12. 12.
    Davis JL, Solomon D, Nussenblatt RB, Palestine AG, Chan C-C (1992) Immunocytochemical staining of vitreous cells: indications, techniques, and results. Ophthalmology 99(2):250–256. CrossRefPubMedGoogle Scholar
  13. 13.
    Hogan MJ, Wood IS, Godfrey WA (1973) Aqueous humor cytology in uveitis. JAMA Ophthalmol 89(3):217–220. CrossRefGoogle Scholar
  14. 14.
    Belfort R Jr, Moura NC, Mendes NF (1982) T and B lymphocytes in the aqueous humor of patients with uveitis. JAMA Ophthalmol 100(3):465–467. CrossRefGoogle Scholar
  15. 15.
    Wildner G, Hunig T, Thurau SR (1996) Orally induced, peptide-specific gamma/delta TCR+ cells suppress experimental autoimmune uveitis. Eur J Immunol 26(9):2140–2148. CrossRefPubMedGoogle Scholar
  16. 16.
    Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, Fisson S, Billiard F, Lucas B, Tadayoni R, Béhar-Cohen F, Levacher B, Galy A, LeHoang P, Klatzmann D, Bodaghi B, Salomon BL (2016) Treatment of uveitis by in situ administration of ex vivo–activated polyclonal regulatory T cells. J Immunol 196(5):2109–2118. CrossRefPubMedGoogle Scholar
  17. 17.
    Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, Mein C, Mahmud N, Galatowicz G, Tomkins-Netzer O, Calder VL, Lightman S (2018) Clinical remission of sight-threatening non-infectious uveitis is characterized by an upregulation of peripheral T-regulatory cell polarized towards T-bet and TIGIT. Front Immunol 9:907. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jabs DA, Rosenbaum JT, Foster CS, Holland GN, Jaffe GJ, Louie JS, Nussenblatt RB, Stiehm ER, Tessler H, Van Gelder RN, Whitcup SM, Yocum D (2000) Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am J Ophthalmol 130(4):492–513CrossRefGoogle Scholar
  19. 19.
    Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN (2014) Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology 121(3):785–796.e783. CrossRefGoogle Scholar
  20. 20.
    Miserocchi E, Modorati G (2012) Rituximab for noninfectious uveitis. Dev Ophthalmol 51:98–109. CrossRefPubMedGoogle Scholar
  21. 21.
    Tappeiner C, Heinz C, Specker C, Heiligenhaus A (2007) Rituximab as a treatment option for refractory endogenous anterior uveitis. Ophthalmic Res 39(3):184–186. CrossRefPubMedGoogle Scholar
  22. 22.
    Heiligenhaus A, Miserocchi E, Heinz C, Gerloni V, Kotaniemi K (2011) Treatment of severe uveitis associated with juvenile idiopathic arthritis with anti-CD20 monoclonal antibody (rituximab). Rheumatology 50(8):1390–1394. CrossRefPubMedGoogle Scholar
  23. 23.
    Simonini G, Xu Z, Caputo R, De Libero C, Pagnini I, Pascual V, Cimaz R (2013) Clinical and transcriptional response to the long-acting interleukin-1 blocker canakinumab in Blau syndrome-related uveitis. Arthritis Rheum 65(2):513–518. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fabiani C, Vitale A, Emmi G, Lopalco G, Vannozzi L, Guerriero S, Gentileschi S, Bacherini D, Franceschini R, Frediani B, Galeazzi M, Iannone F, Tosi GM, Cantarini L (2017) Interleukin (IL)-1 inhibition with anakinra and canakinumab in Behçet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol 36(1):191–197. CrossRefGoogle Scholar
  25. 25.
    Tappeiner C, Mesquida M, Adan A, Anton J, Ramanan AV, Carreno E, Mackensen F, Kotaniemi K, de Boer JH, Bou R, de Vicuna CG, Heiligenhaus A (2016) Evidence for tocilizumab as a treatment option in refractory uveitis associated with juvenile idiopathic arthritis. 43(12) (0315-162X (Print)):2183–2188Google Scholar
  26. 26.
    Calvo-Río V, Santos-Gómez M, Calvo I, González-Fernández MI, López-Montesinos B, Mesquida M, Adán A, Hernández MV, Maíz O, Atanes A, Bravo B, Modesto C, Díaz-Cordovés G, Palmou-Fontana N, Loricera J, González-Vela MC, Demetrio-Pablo R, Hernández JL, González-Gay MA, Blanco R (2017) Anti–interleukin-6 receptor tocilizumab for severe juvenile idiopathic arthritis–associated uveitis refractory to anti–tumor necrosis factor therapy: a multicenter study of twenty-five patients. Arthritis Rheum 69(3):668–675. CrossRefGoogle Scholar
  27. 27.
    Adán A, Mesquida M, Llorenç V, Espinosa G, Molins B, Hernández MV, Pelegrín L (2013) Tocilizumab treatment for refractory uveitis-related cystoid macular edema. Graefes Arch Clin Exp Ophthalmol 251(11):2627–2632. CrossRefPubMedGoogle Scholar
  28. 28.
    Kempen JH, Altaweel MM, Holbrook JT, Jabs DA, Louis TA, Sugar EA, Thorne JE (2011) Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. Ophthalmology 118(10):1916–1926. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Diedrichs-Möhring M, Niesik S, Priglinger CS, Thurau SR, Obermayr F, Sperl S, Wildner G (2018) Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells. J Neuroinflammation 15(1):54. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Diedrichs-Möhring M, Leban J, Strobl S, Obermayr F, Wildner G (2015) A new small molecule for treating inflammation and chorioretinal neovascularization in relapsing-remitting and chronic experimental autoimmune uveitis: a new small molecule to treat monophasic and chronic EAU. Invest Ophthalmol Vis Sci 56(2):1147–1157. CrossRefGoogle Scholar
  31. 31.
    Bose T, Diedrichs-Mohring M, Wildner G (2016) Dry eye disease and uveitis: a closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 15(12):1181–1192. CrossRefPubMedGoogle Scholar
  32. 32.
    Wildner G, Diedrichs-Möhring M (2004) Autoimmune uveitis and antigenic mimicry of environmental antigens. Autoimmun Rev 3(5):383–387. CrossRefPubMedGoogle Scholar
  33. 33.
    Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, Jittayasothorn Y, Chan C-C, Yamane H, Honda K, Caspi RR (2015) Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43(2):343–353. CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Charukamnoetkanok P, Fukushima A, Whitcup SM, Gery I, Egwuagu CE (1998) Expression of ocular autoantigens in the mouse thymus. Curr Eye Res 17(8):788–792CrossRefGoogle Scholar
  35. 35.
    Kyewski B, Derbinski J (2004) Self-representation in the thymus: an extended view. Nat Rev Immunol 4(9):688–698. CrossRefPubMedGoogle Scholar
  36. 36.
    Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401. CrossRefPubMedGoogle Scholar
  37. 37.
    Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218. CrossRefPubMedGoogle Scholar
  38. 38.
    Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3(11):879–889. CrossRefPubMedGoogle Scholar
  39. 39.
    Stein-Streilein J, Lucas K (2011) A current understanding of ocular immune privilege. Curr Immunol Rev 7(3):336–343. CrossRefGoogle Scholar
  40. 40.
    Taylor AW (2007) Ocular immunosuppressive microenvironment. Chem Immunol Allergy 92:71–85. CrossRefPubMedGoogle Scholar
  41. 41.
    Taylor AW, Streilein JW, Cousins SW (1992) Identification of alpha-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr Eye Res 11(12):1199–1206CrossRefGoogle Scholar
  42. 42.
    Taylor AW, Yee DG (2003) Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 44(6):2644–2649CrossRefGoogle Scholar
  43. 43.
    McPherson SW, Heuss ND, Gregerson DS (2013) Local “On-Demand” Generation and Function of Antigen-Specific Foxp3+ Regulatory T Cells. J Immunol 190(10):4971–4981. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhou R, Horai R, Silver PB, Mattapallil MJ, Zárate-Bladés CR, Chong WP, Chen J, Rigden RC, Villasmil R, Caspi RR (2012) the living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition. J Immunol 188(4):1742. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC (1993) Monoclonal antibodies against ICAM-1 (CD54) and LFA-1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol 67(2):143–150CrossRefGoogle Scholar
  46. 46.
    Thurau SR, Mempel TR, Flugel A, Diedrichs-Mohring M, Krombach F, Kawakami N, Wildner G (2004) The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol 16(11):1573–1582. CrossRefPubMedGoogle Scholar
  47. 47.
    Forrester JV, Huitinga I, Lumsden L, Dijkstra CD (1998) Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 17(4):426–437CrossRefGoogle Scholar
  48. 48.
    Rosenbaum JT (2016) Extraarticular manifestations: uveitis. In: Inman R, Sieper J (eds) Textbook of axial spondylarthritis, 1st edn. Oxford University Press, Oxford, pp 145–148Google Scholar
  49. 49.
    Diedrichs-Mohring M, Hoffmann C, Wildner G (2008) Antigen-dependent monophasic or recurrent autoimmune uveitis in rats. Int Immunol 20(3):365–374. CrossRefPubMedGoogle Scholar
  50. 50.
    von Toerne C, Sieg C, Kaufmann U, Diedrichs-Mohring M, Nelson PJ, Wildner G (2010) Effector T cells driving monophasic vs. relapsing/remitting experimental autoimmune uveitis show unique pathway signatures. Mol Immunol 48(1–3):272–280. CrossRefGoogle Scholar
  51. 51.
    Wildner G, Kaufmann U (2013) What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells. Autoimmun Rev 12(11):1070–1075. CrossRefPubMedGoogle Scholar
  52. 52.
    Kaufmann U, Diedrichs-Mohring M, Wildner G (2012) Dynamics of intraocular IFN-gamma, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. PLoS One 7(11):e49008. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Diedrichs-Möhring M, Kaufmann U, Wildner G (2018) The immunopathogenesis of chronic and relapsing autoimmune uveitis – lessons from experimental rat models. Prog Retin Eye Res. CrossRefGoogle Scholar
  54. 54.
    Lee YS, Amadi-Obi A, Yu C-R, Egwuagu CE (2011) Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology 132(4):492–502. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Meka RR, Venkatesha SH, Dudics S, Acharya B, Moudgil KD (2015) IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev 14(12):1131–1141. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Takeda A, Hasegawa E, Fukuhara T, Hirakawa S, Yamada H, Yang Y, Yoshimura T, Hisatomi T, Oshima Y, Yoshida H, Sonoda KH, Ishibashi T (2014) EBI3 is pivotal for the initiation of experimental autoimmune uveitis. Exp Eye Res 125:107–113. CrossRefPubMedGoogle Scholar
  57. 57.
    Sonoda KH, Yoshimura T, Takeda A, Ishibashi T, Hamano S, Yoshida H (2007) WSX-1 plays a significant role for the initiation of experimental autoimmune uveitis. Int Immunol 19(1):93–98. CrossRefPubMedGoogle Scholar
  58. 58.
    Adamus G, Manczak M, Machnicki M (2001) Expression of CC chemokines and their receptors in the eye in autoimmune anterior uveitis associated with EAE. Investigative ophthalmology & visual science 42(12):2894–2903Google Scholar
  59. 59.
    Chong WP, Horai R, Mattapallil MJ, Silver PB, Chen J, Zhou R, Sergeev Y, Villasmil R, Chan CC, Caspi RR (2014) IL-27p28 inhibits central nervous system autoimmunity by concurrently antagonizing Th1 and Th17 responses. J Autoimmun 50:12–22. CrossRefPubMedGoogle Scholar
  60. 60.
    Wang RX, Yu CR, Mahdi RM, Egwuagu CE (2012) Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune uveitis by inhibiting autoreactive Th1/Th17 cells and promoting expansion of regulatory T cells. J Biol Chem 287(43):36012–36021. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hashida N, Ohguro N, Nishida K (2012) Expression analysis of cytokine and chemokine genes during the natural course of murine experimental autoimmune uveoretinitis. ISRN Inflammation 2012:471617–471617. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Owaki T, Asakawa M, Kamiya S, Takeda K, Fukai F, Mizuguchi J, Yoshimoto T (2006) IL-27 suppresses CD28-medicated IL-2 production through suppressor of cytokine signaling 3. J Immunol 176(5):2773–2780. CrossRefPubMedGoogle Scholar
  63. 63.
    Caspi RR, Chan CC, Grubbs BG, Silver PB, Wiggert B, Parsa CF, Bahmanyar S, Billiau A, Heremans H (1994) Endogenous systemic IFN-gamma has a protective role against ocular autoimmunity in mice. J Immunol (Baltimore, Md : 1950) 152(2):890–899 Issn: 0022–1767Google Scholar
  64. 64.
    Hu MH, Zheng QF, Jia XZ, Li Y, Dong YC, Wang CY, Lin QY, Zhang FY, Zhao RB, Xu HW, Zhou JH, Yuan HP, Zhang WH, Ren H (2014) Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol 175(2):268–284. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Theodoropoulou S, Copland DA, Liu J, Wu J, Gardner PJ, Ozaki E, Doyle SL, Campbell M, Dick AD (2017) Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. J Pathol 241(1):45–56. CrossRefPubMedGoogle Scholar
  66. 66.
    Barbour M, Allan D, Xu H, Pei C, Chen M, Niedbala W, Fukada SY, Besnard AG, Alves-Filho JC, Tong X, Forrester JV, Liew FY, Jiang HR (2014) IL-33 attenuates the development of experimental autoimmune uveitis. Eur J Immunol 44(11):3320–3329. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rizzo LV, Miller Rivero NE, Chan CC, Wiggert B, Nussenblatt RB, Caspi RR (1994) Interleukin-2 treatment potentiates induction of oral tolerance in a murine model of autoimmunity. J Clin Invest 94(4):1668–1672 Issn: 0021–9738. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang L, Yu CR, Kim HP, Liao W, Telford WG, Egwuagu CE, Leonard WJ (2011) Key role for IL-21 in experimental autoimmune uveitis. Proc Natl Acad Sci U S A 108(23):9542–9547. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Murray PJ (2006) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 6(4):379–386. CrossRefPubMedGoogle Scholar
  70. 70.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19(1):683–765. CrossRefPubMedGoogle Scholar
  71. 71.
    De Kozak Y, Thillaye Goldenberg B, Naud MC, Da Costa AV, Auriault C, Verwaerde C (2002) Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene. Clin Exp Immunol 130(2):212–223CrossRefGoogle Scholar
  72. 72.
    Smith JR, Verwaerde C, Rolling F, Naud MC, Delanoye A, Thillaye Goldenberg B, Apparailly F, De Kozak Y (2005) Tetracycline-inducible viral interleukin-10 intraocular gene transfer, using adeno-associated virus in experimental autoimmune uveoretinitis. Hum Gene Ther 16(9):1037–1046. CrossRefPubMedGoogle Scholar
  73. 73.
    Agarwal RK, Horai R, Viley AM, Silver PB, Grajewski RS, Bo Su S, Yazdani AT, Zhu W, Kronenberg M, Murray PJ, Rutschman RL, Chan C-C, Caspi RR (2008) Abrogation of anti-retinal autoimmunity in IL-10 transgenic mice due to reduced T cell priming and inhibition of disease effector mechanisms. J Immunol 180(8):5423–5429. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Streilein JW, Okamoto S, Hara Y, Kosiewicz M, Ksander B (1997) Blood-borne signals that induce anterior chamber-associated immune deviation after intracameral injection of antigen. Invest Ophthalmol Vis Sci 38(11):2245–2254PubMedGoogle Scholar
  75. 75.
    Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW (2005) Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 46(3):908–919. CrossRefPubMedGoogle Scholar
  76. 76.
    Namba K, Kitaichi N, Nishida T, Taylor AW (2002) Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J Leukoc Biol 72(5):946–952PubMedGoogle Scholar
  77. 77.
    Wildner G (2019) Are rats more human than mice? Immunobiology 224(1):172–176. CrossRefPubMedGoogle Scholar
  78. 78.
    Kitaichi N, Namba K, Taylor AW (2005) Inducible immune regulation following autoimmune disease in the immune-privileged eye. J Leukoc Biol 77(4):496–502. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lee DJ, Taylor AW (2013) Both MC5r and A2Ar are required for protective regulatory immunity in the spleen of post-experimental autoimmune uveitis in mice. J Immunol (Baltimore, Md : 1950) 191(8):4103–4111. CrossRefGoogle Scholar
  80. 80.
    Lee DJ, Taylor AW (2015) Recovery from experimental autoimmune uveitis promotes induction of antiuveitic inducible Tregs. J Leukoc Biol 97(6):1101–1109. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lee DJ, Preble J, Lee S, Foster CS, Taylor AW (2016) MC5r and A2Ar deficiencies during experimental autoimmune uveitis identifies distinct T cell polarization programs and a biphasic regulatory response. Sci Rep 6:37790. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Silver P, Horai R, Chen J, Jittayasothorn Y, Chan C-C, Villasmil R, Kesen MR, Caspi RR (2015) Retina-specific T regulatory cells bring about resolution and maintain remission of autoimmune uveitis. J Immunol (Baltimore, Md : 1950) 194(7):3011–3019. CrossRefGoogle Scholar
  83. 83.
    Jia X, Hu M, Wang C, Wang C, Zhang F, Han Q, Zhao R, Huang Q, Xu H, Yuan H, Ren H (2011) Coordinated gene expression of Th17- and Treg-associated molecules correlated with resolution of the monophasic experimental autoimmune uveitis. Mol Vis 17:1493–1507PubMedPubMedCentralGoogle Scholar
  84. 84.
    Peng G, Guo Z, Kiniwa Y, Ks V, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang R-F (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309(5739):1380–1384. CrossRefPubMedGoogle Scholar
  85. 85.
    Crane IJ, Kuppner MC, McKillop-Smith S, Knott RM, Forrester JV (1998) Cytokine regulation of RANTES production by human retinal pigment epithelial cells. Cell Immunol 184(1):37–44. CrossRefPubMedGoogle Scholar
  86. 86.
    Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV (2000) Control of chemokine production at the blood-retina barrier. Immunology 101(3):426–433CrossRefGoogle Scholar
  87. 87.
    Ruggieri S, Frassanito MA, Dammacco R, Guerriero S (2012) Treg lymphocytes in autoimmune uveitis. Ocul Immunol Inflamm 20(4):255–261. CrossRefPubMedGoogle Scholar
  88. 88.
    Yeh S, Li Z, Forooghian F, Hwang FS, Cunningham MA, Pantanelli S, Lew JC, Wroblewski KK, Vitale S, Nussenblatt RB (2009) CD4+Foxp3+ T-regulatory cells in noninfectious uveitis. Arch Ophthalmol 127(4):407–413. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang H-D, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):e38. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89. CrossRefPubMedGoogle Scholar
  91. 91.
    Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663. CrossRefPubMedGoogle Scholar
  92. 92.
    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Janson PCJ, Winerdal ME, Marits P, Thörn M, Ohlsson R, Winqvist O (2008) FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS One 3(2):e1612. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kim Y, Kim TW, Park YS, Jeong EM, Lee D-S, Kim I-G, Chung H, Hwang Y-i, Lee WJ, Yu HG, Kang JS (2016) The role of interleukin-22 and its receptor in the development and pathogenesis of experimental autoimmune uveitis. PLoS One 11(5):e0154904. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10:595–602. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE, Schizas M, Hoyos BE, Putintseva EV, Chaudhry A, Dikiy S, Fujisawa S, Chudakov DM, Treuting PM, Rudensky AY (2017) Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546:421–425. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ohnmacht C, Park J-H, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, Busslinger M, Cerf-Bensussan N, Boneca IG, Voehringer D, Hase K, Honda K, Sakaguchi S, Eberl G (2015) The microbiota regulates type 2 immunity through RORγt T cells. Science 349(6251):989–993. CrossRefPubMedGoogle Scholar
  98. 98.
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C (2015) Individual intestinal symbionts induce a distinct population of RORγt regulatory T cells. Science 349(6251):993–997. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Section of Immunobiology, Department of OphthalmologyUniversity HospitalMunichGermany

Personalised recommendations