The role of invariant T cells in inflammation of the skin and airways

  • Kwok Ho Yip
  • Magdalene Papadopoulos
  • Harshita Pant
  • Damon J. TumesEmail author


Invariant and semi-invariant T cells are emerging as important regulators of host environment interactions at barrier tissues such as the airway and skin. In contrast to conventional T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells express T cell receptors of very limited diversity. iNKT and MAIT cells recognise antigens presented by the MHC class 1-like monomorphic molecules CD1d and MR1, respectively. Both iNKT cells and MAIT cells have been identified in the skin and airways and can rapidly produce cytokines after activation. Numerous studies have implicated iNKT cells in the pathology of both skin and airway disease, but conflicting evidence in human disease means that more studies are necessary to resolve the exact roles of iNKT in inflammation. The functions of MAIT cells in skin and lung inflammation are even less well defined. We herein describe the current literature on iNKT and MAIT cells in allergic and non-allergic skin diseases (dermatitis and psoriasis) and airway diseases (asthma, chronic obstructive pulmonary disease, rhinitis, and chronic rhinosinusitis).


Asthma Chronic obstructive pulmonary disease Rhinitis Chronic rhinosinusitis Dermatitis Psoriasis Invariant natural killer T iNKT Mucosal associated invariant T MAIT 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T (2017) Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 278(1):8–19CrossRefPubMedGoogle Scholar
  2. 2.
    Arase H, Arase N, Ogasawara K, Good RA, Onoe K (1992) An NK1.1+ CD4+8- single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor V beta family. Proc Natl Acad Sci U S A 89(14):6506–6510CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hayakawa K, Lin BT, Hardy RR (1992) Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the V beta 8 T cell receptor gene family. J Exp Med 176(1):269–274CrossRefPubMedGoogle Scholar
  4. 4.
    Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl KF, Mizutani Y, Imai K, Taniguchi M (1991) Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci U S A 88(17):7518–7522CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J Exp Med 180(3):1097–1106CrossRefPubMedGoogle Scholar
  6. 6.
    Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, van Kaer L, Kawano T, Taniguchi M, Nishimura T (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189(7):1121–1128CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    de Leit-Moraes MC, Hameg A, Arnould A, Machavoine F, Koezuka Y, Schneider E et al (1999) A distinct IL-18-induced pathway to fully activate NK T lymphocytes independently from TCR engagement. J Immunol 163(11):5871–5876Google Scholar
  8. 8.
    Rachitskaya AV, Hansen AM, Horai R, Li Z, Villasmil R, Luger D, Nussenblatt RB, Caspi RR (2008) Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol 180(8):5167–5171CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Terashima A, Watarai H, Inoue S, Sekine E, Nakagawa R, Hase K, Iwamura C, Nakajima H, Nakayama T, Taniguchi M (2008) A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 205(12):2727–2733CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bourgeois E, Van LP, Samson M, Diem S, Barra A, Roga S et al (2009) The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol 39(4):1046–1055CrossRefPubMedGoogle Scholar
  11. 11.
    Kim CH, Johnston B, Butcher EC (2002) Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood. 100(1):11–16CrossRefPubMedGoogle Scholar
  12. 12.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 278(5343):1626–1629CrossRefPubMedGoogle Scholar
  13. 13.
    Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT (2006) Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci U S A 103(8):2782–2787CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Albacker LA, Chaudhary V, Chang YJ, Kim HY, Chuang YT, Pichavant M, DeKruyff RH, Savage PB, Umetsu DT (2013) Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19(10):1297–1304CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, Li Y, Imamura M, Kaneko Y, Okawara A, Miyazaki Y, Gómez-Velasco A, Rogers P, Dahesh S, Uchiyama S, Khurana A, Kawahara K, Yesilkaya H, Andrew PW, Wong CH, Kawakami K, Nizet V, Besra GS, Tsuji M, Zajonc DM, Kronenberg M (2011) Invariant natural killer T cells recognize glycolipids from pathogenic gram-positive bacteria. Nat Immunol 12(10):966–974CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, Blumberg RS (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 336(6080):489–493CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity. 29(3):391–403CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Barr K, Meng F, Singh H, Bendelac A (2012) Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol 13(3):264–271CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity. 20(4):477–494CrossRefPubMedGoogle Scholar
  20. 20.
    Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA (2013) Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 14(11):1146–1154CrossRefPubMedGoogle Scholar
  21. 21.
    Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS et al (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A 105(32):11287–11292CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kim PJ, Pai SY, Brigl M, Besra GS, Gumperz J, Ho IC (2006) GATA-3 regulates the development and function of invariant NKT cells. J Immunol 177(10):6650–6659CrossRefPubMedGoogle Scholar
  23. 23.
    Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A 105(50):19845–19850CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pobezinsky LA, Etzensperger R, Jeurling S, Alag A, Kadakia T, McCaughtry TM et al (2015) Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat Immunol 16(5):517–524CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B, Chawla A, Mock D, Vijayanand P, Kronenberg M (2016) Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol 17(6):728–739CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chang PP, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG (2011) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13(1):35–43CrossRefPubMedGoogle Scholar
  27. 27.
    Galli G, Nuti S, Tavarini S, Galli-Stampino L, De Lalla C, Casorati G et al (2003) CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 197(8):1051–1057CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Barral P, Eckl-Dorna J, Harwood NE, De Santo C, Salio M, Illarionov P et al (2008) B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci U S A 105(24):8345–8350CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    King IL, Fortier A, Tighe M, Dibble J, Watts GF, Veerapen N, Haberman AM, Besra GS, Mohrs M, Brenner MB, Leadbetter EA (2011) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13(1):44–50CrossRefPubMedGoogle Scholar
  30. 30.
    Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, Aid M, Tsui C, Maldonado P, Nair U, Ghneim K, Fallon PG, Sekaly RP, Barouch DH, Shalek AK, Bruckbauer A, Strid J, Batista FD (2018) Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell. 172(3):517–533 e20CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 422(6928):164–169CrossRefPubMedGoogle Scholar
  32. 32.
    Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, de Libero G, Mori L (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat Commun 5:3866CrossRefPubMedGoogle Scholar
  33. 33.
    Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SBG, Uldrich AP, Birkinshaw RW, Patel O, Kostenko L, Meehan B, Kedzierska K, Liu L, Fairlie DP, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J, Kjer-Nielsen L (2013) Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210(11):2305–2320CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189(12):1907–1921CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YYL, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8(6):e1000407CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Teunissen MBM, Yeremenko NG, Baeten DLP, Chielie S, Spuls PI, de Rie MA, Lantz O, Res PCM (2014) The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J Invest Dermatol 134(12):2898–2907CrossRefPubMedGoogle Scholar
  37. 37.
    Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7(3):e54CrossRefPubMedGoogle Scholar
  38. 38.
    Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178(1):1–16CrossRefPubMedGoogle Scholar
  39. 39.
    Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 117(4):1250–1259CrossRefPubMedGoogle Scholar
  40. 40.
    Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M et al (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11(8):701–708CrossRefPubMedGoogle Scholar
  41. 41.
    Leeansyah E, Loh L, Nixon DF, Sandberg JK (2014) Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 5:3143CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N, Fleming VM, Sahgal N, Leslie A, Oo Y, Geremia A, Scriba TJ, Hanekom WA, Lauer GM, Lantz O, Adams DH, Powrie F, Barnes E, Klenerman P (2012) Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood. 119(2):422–433CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dias J, Leeansyah E, Sandberg JK (2017) Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A 114(27):E5434–E5E43CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SB, Meehan B et al (2015) Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 212(7):1095–1108CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L et al (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 491(7426):717–723CrossRefPubMedGoogle Scholar
  46. 46.
    Fanta CH (2009) Asthma. N Engl J Med 360(10):1002–1014CrossRefPubMedGoogle Scholar
  47. 47.
    Finkelman FD, Hogan SP, Hershey GK, Rothenberg ME, Wills-Karp M (2010) Importance of cytokines in murine allergic airway disease and human asthma. J Immunol 184(4):1663–1674CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, Tumes DJ, Okamoto Y (2017) Th2 cells in health and disease. Annu Rev Immunol 35:53–84CrossRefPubMedGoogle Scholar
  49. 49.
    Brown DR, Fowell DJ, Corry DB, Wynn TA, Moskowitz NH, Cheever AW, Locksley RM, Reiner SL (1996) Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J Exp Med 184(4):1295–1304CrossRefPubMedGoogle Scholar
  50. 50.
    Korsgren M, Persson CG, Sundler F, Bjerke T, Hansson T, Chambers BJ et al (1999) Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 189(3):553–562CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    McKnight CG, Morris SC, Perkins C, Zhu Z, Hildeman DA, Bendelac A et al (2017) NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma. PLoS One 12(11):e0188221CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang Y, Rogers KH, Lewis DB (1996) Beta 2-microglobulin-dependent T cells are dispensable for allergen-induced T helper 2 responses. J Exp Med 184(4):1507–1512CrossRefPubMedGoogle Scholar
  53. 53.
    Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9(5):582–588CrossRefPubMedGoogle Scholar
  54. 54.
    Lisbonne M, Diem S, de Castro KA, Lefort J, Araujo LM, Hachem P et al (2003) Cutting edge: invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171(4):1637–1641CrossRefPubMedGoogle Scholar
  55. 55.
    Chandra S, Zhao M, Budelsky A, de Mingo PA, Day J, Fu Z et al (2015) A new mouse strain for the analysis of invariant NKT cell function. Nat Immunol 16(8):799–800CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hachem P, Lisbonne M, Michel ML, Diem S, Roongapinun S, Lefort J, Marchal G, Herbelin A, Askenase PW, Dy M, de Leite-Moraes MC (2005) Alpha-galactosylceramide-induced iNKT cells suppress experimental allergic asthma in sensitized mice: role of IFN-gamma. Eur J Immunol 35(10):2793–2802CrossRefPubMedGoogle Scholar
  57. 57.
    Matangkasombut P, Pichavant M, Yasumi T, Hendricks C, Savage PB, Dekruyff RH et al (2008) Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol 121(5):1287–1289CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204(5):995–1001CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Scanlon ST, Thomas SY, Ferreira CM, Bai L, Krausz T, Savage PB, Bendelac A (2011) Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J Exp Med 208(10):2113–2124CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tumes DJ, Hirahara K, Papadopoulos M, Shinoda K, Onodera A, Kumagai J, et al. (2019) Ezh2 controls development of natural killer T cells that cause spontaneous asthma-like pathology. J Allergy Clin Immunol. Advance onlineGoogle Scholar
  61. 61.
    Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, Motohashi S, Nakayama T (2013) The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity. 39(5):819–832CrossRefPubMedGoogle Scholar
  62. 62.
    Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, DeKruyff RH, Shore SA, Umetsu DT (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205(2):385–393CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Divekar R, Kita H (2015) Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol 15(1):98–103CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stock P, Lombardi V, Kohlrautz V, Akbari O (2009) Induction of airway hyperreactivity by IL-25 is dependent on a subset of invariant NKT cells expressing IL-17RB. J Immunol 182(8):5116–5122CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE (2008) IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol 20(8):1019–1030CrossRefPubMedGoogle Scholar
  66. 66.
    Nagata Y, Kamijuku H, Taniguchi M, Ziegler S, Seino K (2007) Differential role of thymic stromal lymphopoietin in the induction of airway hyperreactivity and Th2 immune response in antigen-induced asthma with respect to natural killer T cell function. Int Arch Allergy Immunol 144(4):305–314CrossRefPubMedGoogle Scholar
  67. 67.
    Vultaggio A, Nencini F, Pratesi S, Petroni G, Romagnani S, Maggi E (2012) Poly(I:C) promotes the production of IL-17A by murine CD1d-driven invariant NKT cells in airway inflammation. Allergy. 67(10):1223–1232CrossRefPubMedGoogle Scholar
  68. 68.
    Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M et al (2006) CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 354(11):1117–1129CrossRefPubMedGoogle Scholar
  69. 69.
    Koh YI, Shim JU (2010) Association between sputum natural killer T cells and eosinophilic airway inflammation in human asthma. Int Arch Allergy Immunol 153(3):239–248CrossRefPubMedGoogle Scholar
  70. 70.
    Matangkasombut P, Marigowda G, Ervine A, Idris L, Pichavant M, Kim HY, Yasumi T, Wilson SB, DeKruyff RH, Faul JL, Israel E, Akbari O, Umetsu DT (2009) Natural killer T cells in the lungs of patients with asthma. J Allergy Clin Immunol 123(5):1181–1185CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Reynolds C, Barkans J, Clark P, Kariyawasam H, Altmann D, Kay B, Boyton R (2009) Natural killer T cells in bronchial biopsies from human allergen challenge model of allergic asthma. J Allergy Clin Immunol 124(4):860–862 author reply 2CrossRefPubMedGoogle Scholar
  72. 72.
    Brooks CR, Weinkove R, Hermans IF, van Dalen CJ, Douwes J (2010) Invariant natural killer T cells and asthma: immunologic reality or methodologic artifact? J Allergy Clin Immunol 126(4):882–885CrossRefPubMedGoogle Scholar
  73. 73.
    Vijayanand P, Seumois G, Pickard C, Powell RM, Angco G, Sammut D, Gadola SD, Friedmann PS, Djukanović R (2007) Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 356(14):1410–1422CrossRefPubMedGoogle Scholar
  74. 74.
    Chandra S, Wingender G, Greenbaum JA, Khurana A, Gholami AM, Ganesan AP, Rosenbach M, Jaffee K, Gern JE, Wood R, O’Connor G, Sandel M, Kattan M, Bacharier L, Togias A, Horner AA, Kronenberg M (2018) Development of asthma in Inner-City children: possible roles of MAIT cells and variation in the home environment. J Immunol 200(6):1995–2003CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lezmi G, Abou Taam R, Dietrich C, Chatenoud L, de Blic J, Leite-de-Moraes M (2018) Circulating IL-17-producing mucosal-associated invariant T cells (MAIT) are associated with symptoms in children with asthma. Clin Immunol 188:7–11CrossRefPubMedGoogle Scholar
  76. 76.
    Shim JU, Koh YI (2014) Increased Th2-like invariant natural killer T cells in peripheral blood from patients with asthma. Allergy, Asthma Immunol Res 6(5):444–448CrossRefGoogle Scholar
  77. 77.
    Hinks TS, Zhou X, Staples KJ, Dimitrov BD, Manta A, Petrossian T et al (2015) Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J Allergy Clin Immunol 136(2):323–333CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS, Sugaya K, Tumes DJ, Yamamoto H, Hara T, Tani-ichi S, Ikuta K, Okamoto Y, Nakayama T (2016) Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci U S A 113(20):E2842–E2851CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Pant H, Hughes A, Miljkovic D, Schembri M, Wormald P, Macardle P, Grose R, Zola H, Krumbiegel D (2013) Accumulation of effector memory CD8+ T cells in nasal polyps. Am J Rhinol Allergy 27(5):e117–e126CrossRefPubMedGoogle Scholar
  80. 80.
    Yamamoto H, Okamoto Y, Horiguchi S, Kunii N, Yonekura S, Nakayama T (2007) Detection of natural killer T cells in the sinus mucosa from asthmatics with chronic sinusitis. Allergy. 62(12):1451–1455CrossRefPubMedGoogle Scholar
  81. 81.
    Tsao CC, Tsao PN, Chen YG, Chuang YH (2016) Repeated activation of lung invariant NKT cells results in chronic obstructive pulmonary disease-like symptoms. PLoS One 11(1):e0147710CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polineni D, Patterson GA, Schwendener RA, Allard JD, Peltz G, Holtzman MJ (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14(6):633–640CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Szabo M, Sarosi V, Baliko Z, Bodo K, Farkas N, Berki T et al (2017) Deficiency of innate-like T lymphocytes in chronic obstructive pulmonary disease. Respir Res 18(1):197CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kwon HY, Kim E (2016) Factors contributing to quality of life in COPD patients in South Korea. Int J Chron Obstruct Pulmon Dis 11:103–109CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hinks TS, Wallington JC, Williams AP, Djukanovic R, Staples KJ, Wilkinson TM (2016) Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung. Implications for Nontypeable Haemophilus influenzae infection. Am J Respir Crit Care Med 194(10):1208–1218CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Van Eldere J, Slack MP, Ladhani S, Cripps AW (2014) Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect Dis 14(12):1281–1292CrossRefPubMedGoogle Scholar
  87. 87.
    Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14(10):978–985CrossRefPubMedGoogle Scholar
  88. 88.
    Di Meglio P, Perera GK, Nestle FO (2011) The multitasking organ: recent insights into skin immune function. Immunity. 35(6):857–869CrossRefPubMedGoogle Scholar
  89. 89.
    Topham DJ, Reilly EC (2018) Tissue-resident memory CD8(+) T cells: from phenotype to function. Front Immunol 9:515CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cavani A, Pennino D, Eyerich K (2012) Th17 and Th22 in skin allergy. Chem Immunol Allergy 96:39–44CrossRefPubMedGoogle Scholar
  91. 91.
    Novak N, Bieber T (2003) Allergic and nonallergic forms of atopic diseases. J Allergy Clin Immunol 112(2):252–262CrossRefPubMedGoogle Scholar
  92. 92.
    Wu WH, Park CO, Oh SH, Kim HJ, Kwon YS, Bae BG et al (2010) Thymic stromal lymphopoietin-activated invariant natural killer T cells trigger an innate allergic immune response in atopic dermatitis. J Allergy Clin Immunol 126(2):290–299 9 e1–4CrossRefPubMedGoogle Scholar
  93. 93.
    Takahashi T, Nakamura K, Chiba S, Kanda Y, Tamaki K, Hirai H (2003) V alpha 24+ natural killer T cells are markedly decreased in atopic dermatitis patients. Hum Immunol 64(6):586–592CrossRefPubMedGoogle Scholar
  94. 94.
    Gyimesi E, Nagy G, Remenyik E, Sipka S, Zeher M, Biro T et al (2011) Altered peripheral invariant natural killer T cells in atopic dermatitis. J Clin Immunol 31(5):864–872CrossRefPubMedGoogle Scholar
  95. 95.
    Simon D, Kozlowski E, Simon H (2009) Natural killer T cells expressing IFN-gamma and IL-4 in lesional skin of atopic eczema. Allergy. 64(11):1681–1684CrossRefPubMedGoogle Scholar
  96. 96.
    Gober MD, Fishelevich R, Zhao Y, Unutmaz D, Gaspari AA (2008) Human natural killer T cells infiltrate into the skin at elicitation sites of allergic contact dermatitis. J Invest Dermatol 128(6):1460–1469CrossRefPubMedGoogle Scholar
  97. 97.
    Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2(8):557–568CrossRefPubMedGoogle Scholar
  98. 98.
    Nieuwenhuis EE, Gillessen S, Scheper RJ, Exley MA, Taniguchi M, Balk SP et al (2005) CD1d and CD1d-restricted iNKT-cells play a pivotal role in contact hypersensitivity. Exp Dermatol 14(4):250–258CrossRefPubMedGoogle Scholar
  99. 99.
    Shimizuhira C, Otsuka A, Honda T, Kitoh A, Egawa G, Nakajima S, Nakashima C, Watarai H, Miyachi Y, Kabashima K (2014) Natural killer T cells are essential for the development of contact hypersensitivity in BALB/c mice. J Invest Dermatol 134(11):2709–2718CrossRefPubMedGoogle Scholar
  100. 100.
    Askenase PW, Majewska-Szczepanik M, Kerfoot S, Szczepanik M (2011) Participation of iNKT cells in the early and late components of Tc1-mediated DNFB contact sensitivity: cooperative role of gammadelta-T cells. Scand J Immunol 73(5):465–477CrossRefPubMedGoogle Scholar
  101. 101.
    Curzytek K, Kubera M, Majewska-Szczepanik M, Szczepanik M, Ptak W, Duda W, Leśkiewicz M, Basta-Kaim A, Budziszewska B, Regulska M, Korzeniak B, Głombik K, Maes M, Lasoń W (2015) Inhibitory effect of antidepressant drugs on contact hypersensitivity reaction is connected with their suppressive effect on NKT and CD8(+) T cells but not on TCR delta T cells. Int Immunopharmacol 28(2):1091–1096CrossRefPubMedGoogle Scholar
  102. 102.
    Campos RA, Szczepanik M, Itakura A, Akahira-Azuma M, Sidobre S, Kronenberg M, Askenase PW (2003) Cutaneous immunization rapidly activates liver invariant Valpha14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity. J Exp Med 198(12):1785–1796CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Askenase PW, Itakura A, Leite-de-Moraes MC, Lisbonne M, Roongapinun S, Goldstein DR, Szczepanik M (2005) TLR-dependent IL-4 production by invariant Valpha14+Jalpha18+ NKT cells to initiate contact sensitivity in vivo. J Immunol 175(10):6390–6401CrossRefPubMedGoogle Scholar
  104. 104.
    Askenase PW, Szczepanik M, Itakura A, Kiener C, Campos RA (2004) Extravascular T-cell recruitment requires initiation begun by Valpha14+ NKT cells and B-1 B cells. Trends Immunol 25(8):441–449CrossRefPubMedGoogle Scholar
  105. 105.
    Goubier A, Vocanson M, Macari C, Poyet G, Herbelin A, Nicolas JF, Dubois B, Kaiserlian D (2013) Invariant NKT cells suppress CD8(+) T-cell-mediated allergic contact dermatitis independently of regulatory CD4(+) T cells. J Invest Dermatol 133(4):980–987CrossRefPubMedGoogle Scholar
  106. 106.
    Fjelbye J, Antvorskov JC, Buschard K, Issazadeh-Navikas S, Engkilde K (2015) CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells. Exp Dermatol 24(11):853–856CrossRefPubMedGoogle Scholar
  107. 107.
    Benhadou F, Mintoff D, Del Marmol V (2018) Psoriasis: keratinocytes or immune cells—which is the trigger? Dermatology. 235:91–100CrossRefPubMedGoogle Scholar
  108. 108.
    Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A (2010) Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol 130(5):1373–1383CrossRefPubMedGoogle Scholar
  109. 109.
    Nickoloff BJ, Wrone-Smith T, Bonish B, Porcelli SA (1999) Response of murine and normal human skin to injection of allogeneic blood-derived psoriatic immunocytes: detection of T cells expressing receptors typically present on natural killer cells, including CD94, CD158, and CD161. Arch Dermatol 135(5):546–552CrossRefPubMedGoogle Scholar
  110. 110.
    Gilhar A, Ullmann Y, Kerner H, Assy B, Shalaginov R, Serafimovich S et al (2002) Psoriasis is mediated by a cutaneous defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors. J Invest Dermatol 119(2):384–391CrossRefPubMedGoogle Scholar
  111. 111.
    Bonish B, Jullien D, Dutronc Y, Huang BB, Modlin R, Spada FM, Porcelli SA, Nickoloff BJ (2000) Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol 165(7):4076–4085CrossRefPubMedGoogle Scholar
  112. 112.
    Curry JL, Qin JZ, Robinson J, Nickoloff BJ (2003) Reactivity of resident immunocytes in normal and prepsoriatic skin using an ex vivo skin-explant model system. Arch Pathol Lab Med 127(3):289–296PubMedGoogle Scholar
  113. 113.
    McWilliam HE, Villadangos JA (2018) MR1 antigen presentation to MAIT cells: new ligands, diverse pathways? Curr Opin Immunol 52:108–113CrossRefPubMedGoogle Scholar
  114. 114.
    Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ, Moreno JC et al (2009) IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol 86(2):435–443CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Cancer BiologyThe University of South Australia and SA PathologyAdelaideAustralia
  2. 2.Department of Immunology, Graduate School of MedicineChiba UniversityChibaJapan
  3. 3.Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical SchoolUniversity of AdelaideAdelaideAustralia
  4. 4.South Australian Health and Medical Research InstituteAdelaideAustralia

Personalised recommendations