Advertisement

Developmental origin and sex-specific risk for infections and immune diseases later in life

  • Dimitra E. Zazara
  • Petra Clara Arck
Review

Abstract

The intrauterine environment is an important determinant of immunity later in life of the offspring. An altered prenatal immune development can result in a high postnatal risk for infections, chronic immune diseases, and autoimmunity. Many of these immune diseases show a strong sex bias, such as a high incidence of autoimmune diseases and allergies in adult females or a high risk for infections in males. Here, we comprehensively review established pathways and propose novel concepts modulating the risk for such poor immunity during childhood and throughout life. Moreover, we highlight how an adverse fetal environment may affect or aggravate the risk for poor immunity in a sex-specific manner. An improved understanding of a sex-specific susceptibility to poor immunity along with insights on how such risk can be modulated before or around birth will allow the development of tailored prevention strategies.

Keywords

Sex-specificity Children’s health Pregnancy Infections Chronic immune diseases 

Notes

Funding information

The writing of this review and reference to the authors’ own work were made possible through funding by the Deutsche Forschungsgemeinschaft (AR232/25-2, AR232/27-2 within KFO296/2) and by start-up funding (Landerforschungsförderung) for the network “Sex-specific immunity,” provided by the State Ministry for Science, Research and Equality in Hamburg.

References

  1. 1.
    Barker DJ (1995) The fetal and infant origins of disease. Eur J Clin Investig 25(7):457–463CrossRefGoogle Scholar
  2. 2.
    Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19:548.  https://doi.org/10.1038/nm.3160 CrossRefPubMedGoogle Scholar
  3. 3.
    Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359(1):61–73.  https://doi.org/10.1056/NEJMra0708473 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Solano ME, Jago C, Pincus MK, Arck PC (2011) Highway to health; or how prenatal factors determine disease risks in the later life of the offspring. J Reprod Immunol 90(1):3–8.  https://doi.org/10.1016/j.jri.2011.01.023 CrossRefPubMedGoogle Scholar
  5. 5.
    Fisher RE, Steele M, Karrow NA (2012) Fetal programming of the neuroendocrine-immune system and metabolic disease. J Pregnancy 2012:792934.  https://doi.org/10.1155/2012/792934 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL, Morrison JL (2008) Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol 102(2):82–89.  https://doi.org/10.1111/j.1742-7843.2007.00188.x CrossRefPubMedGoogle Scholar
  7. 7.
    Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H, Lemasters GK, Ho SM (2013) Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol 131(2):592–594 e591–593.  https://doi.org/10.1016/j.jaci.2012.10.042 CrossRefPubMedGoogle Scholar
  8. 8.
    Burbank AJ, Sood AK, Kesic MJ, Peden DB, Hernandez ML (2017) Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol 140(1):1–12.  https://doi.org/10.1016/j.jaci.2017.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eder W, Ege MJ, von Mutius E (2006) The asthma epidemic. N Engl J Med 355(21):2226–2235.  https://doi.org/10.1056/NEJMra054308 CrossRefPubMedGoogle Scholar
  10. 10.
    Thacher JD, Gruzieva O, Pershagen G, Neuman A, Wickman M, Kull I, Melen E, Bergstrom A (2014) Pre- and postnatal exposure to parental smoking and allergic disease through adolescence. Pediatrics 134(3):428–434.  https://doi.org/10.1542/peds.2014-0427 CrossRefPubMedGoogle Scholar
  11. 11.
    Hartwig IR, Sly PD, Schmidt LA, van Lieshout RJ, Bienenstock J, Holt PG, Arck PC (2014) Prenatal adverse life events increase the risk for atopic diseases in children, which is enhanced in the absence of a maternal atopic predisposition. J Allergy Clin Immunol 134(1):160–169.  https://doi.org/10.1016/j.jaci.2014.01.033 CrossRefPubMedGoogle Scholar
  12. 12.
    Henriksen RE, Thuen F (2015) Marital quality and stress in pregnancy predict the risk of infectious disease in the offspring: the Norwegian Mother and Child Cohort Study. PLoS One 10(9):e0137304.  https://doi.org/10.1371/journal.pone.0137304 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nielsen NM, Hansen AV, Simonsen J, Hviid A (2011) Prenatal stress and risk of infectious diseases in offspring. Am J Epidemiol 173(9):990–997.  https://doi.org/10.1093/aje/kwq492 CrossRefPubMedGoogle Scholar
  14. 14.
    Kollmann TR, Marchant A (2017) Immunity and immunopathology in early human life. Semin Immunopathol 39(6):575–576.  https://doi.org/10.1007/s00281-017-0657-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Gollwitzer ES, Marsland BJ (2015) Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol 36(11):684–696.  https://doi.org/10.1016/j.it.2015.09.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Ygberg S, Nilsson A (2012) The developing immune system—from foetus to toddler. Acta Paediatr 101(2):120–127.  https://doi.org/10.1111/j.1651-2227.2011.02494.x CrossRefPubMedGoogle Scholar
  17. 17.
    Kinder JM, Stelzer IA, Arck PC, Way SS (2017) Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 17(8):483–494.  https://doi.org/10.1038/nri.2017.38 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang G, Miyahara Y, Guo Z, Khattar M, Stepkowski SM, Chen W (2010) “Default” generation of neonatal regulatory T cells. J Immunol 185(1):71–78.  https://doi.org/10.4049/jimmunol.0903806 CrossRefPubMedGoogle Scholar
  19. 19.
    Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, Chaturvedi V, Strong BS, Qualls JE, Steinbrecher KA, Kalfa TA, Shaaban AF, Way SS (2013) Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504(7478):158–162.  https://doi.org/10.1038/nature12675 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gibbons D, Fleming P, Virasami A, Michel ML, Sebire NJ, Costeloe K, Carr R, Klein N, Hayday A (2014) Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med 20(10):1206–1210.  https://doi.org/10.1038/nm.3670 CrossRefPubMedGoogle Scholar
  21. 21.
    Chen X, Welner RS, Kincade PW (2009) A possible contribution of retinoids to regulation of fetal B lymphopoiesis. Eur J Immunol 39(9):2515–2524.  https://doi.org/10.1002/eji.200939374 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Macpherson AJ, de Aguero MG, Ganal-Vonarburg SC (2017) How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol 17(8):508–517.  https://doi.org/10.1038/nri.2017.58 CrossRefPubMedGoogle Scholar
  23. 23.
    Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120(10):2749–2771PubMedGoogle Scholar
  24. 24.
    Vermot J, Niederreither K, Garnier JM, Chambon P, Dolle P (2003) Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc Natl Acad Sci U S A 100(4):1763–1768.  https://doi.org/10.1073/pnas.0437920100 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, Almeida FF, Ibiza S, Barbosa I, Goverse G, Labao-Almeida C, Godinho-Silva C, Konijn T, Schooneman D, O'Toole T, Mizee MR, Habani Y, Haak E, Santori FR, Littman DR, Schulte-Merker S, Dzierzak E, Simas JP, Mebius RE, Veiga-Fernandes H (2014) Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508(7494):123–127.  https://doi.org/10.1038/nature13158 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xiong T, Turner J-E (2018) Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Semin Immunopathol.  https://doi.org/10.1007/s00281-018-0670-4 CrossRefGoogle Scholar
  27. 27.
    Moore SE, Collinson AC, Tamba N'Gom P, Aspinall R, Prentice AM (2006) Early immunological development and mortality from infectious disease in later life. Proc Nutr Soc 65(3):311–318CrossRefGoogle Scholar
  28. 28.
    Chadio SE, Kotsampasi B, Papadomichelakis G, Deligeorgis S, Kalogiannis D, Menegatos I, Zervas G (2007) Impact of maternal undernutrition on the hypothalamic-pituitary-adrenal axis responsiveness in sheep at different ages postnatal. J Endocrinol 192(3):495–503.  https://doi.org/10.1677/joe-06-0172 CrossRefPubMedGoogle Scholar
  29. 29.
    Fowden AL, Giussani DA, Forhead AJ (2005) Endocrine and metabolic programming during intrauterine development. Early Hum Dev 81(9):723–734.  https://doi.org/10.1016/j.earlhumdev.2005.06.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Thiele K, Diao L, Arck PC (2018) Immunometabolism, pregnancy, and nutrition. Semin Immunopathol 40(2):157–174.  https://doi.org/10.1007/s00281-017-0660-y CrossRefPubMedGoogle Scholar
  31. 31.
    Suh DI, Chang HY, Lee E, Yang SI, Hong SJ (2017) Prenatal maternal distress and allergic diseases in offspring: review of evidence and possible pathways. Allergy Asthma Immunol Res 9(3):200–211.  https://doi.org/10.4168/aair.2017.9.3.200 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Merlot E, Couret D, Otten W (2008) Prenatal stress, fetal imprinting and immunity. Brain Behav Immun 22(1):42–51.  https://doi.org/10.1016/j.bbi.2007.05.007 CrossRefPubMedGoogle Scholar
  33. 33.
    Palmer AC (2011) Nutritionally mediated programming of the developing immune system. Adv Nutr 2(5):377–395.  https://doi.org/10.3945/an.111.000570 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wright RJ (2012) Stress-related programming of autonomic imbalance: role in allergy and asthma. Chem Immunol Allergy 98:32–47.  https://doi.org/10.1159/000336496 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Coe CL, Kramer M, Kirschbaum C, Netter P, Fuchs E (2002) Prenatal stress diminishes the cytokine response of leukocytes to endotoxin stimulation in juvenile rhesus monkeys. J Clin Endocrinol Metab 87(2):675–681.  https://doi.org/10.1210/jcem.87.2.8233 CrossRefPubMedGoogle Scholar
  36. 36.
    Emack J, Kostaki A, Walker C-D, Matthews SG (2008) Chronic maternal stress affects growth, behaviour and hypothalamo–pituitary–adrenal function in juvenile offspring. Horm Behav 54(4):514–520.  https://doi.org/10.1016/j.yhbeh.2008.02.025 CrossRefPubMedGoogle Scholar
  37. 37.
    Entringer S, Kumsta R, Hellhammer DH, Wadhwa PD, Wüst S (2009) Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Horm Behav 55(2):292–298.  https://doi.org/10.1016/j.yhbeh.2008.11.006 CrossRefPubMedGoogle Scholar
  38. 38.
    Hashimoto M, Watanabe T, Fujioka T, Tan N, Yamashita H, Nakamura S (2001) Modulating effects of prenatal stress on hyperthermia induced in adult rat offspring by restraint or LPS-induced stress. Physiol Behav 73(1):125–132.  https://doi.org/10.1016/S0031-9384(01)00473-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Mouihate A (2012) Prenatal immune stress in rats dampens fever during adulthood. Dev Neurosci 34(4):318–326.  https://doi.org/10.1159/000339852 CrossRefPubMedGoogle Scholar
  40. 40.
    Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD, Lightman SL (2000) Early-life exposure to endotoxin alters hypothalamic–pituitary–adrenal function and predisposition to inflammation. Proc Natl Acad Sci 97(10):5645CrossRefGoogle Scholar
  41. 41.
    Entringer S, Buss C, Swanson JM, Cooper DM, Wing DA, Waffarn F, Wadhwa PD (2012) Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. J Nutr Metab 2012:632548.  https://doi.org/10.1155/2012/632548 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Manti S, Marseglia L, D'Angelo G, Cuppari C, Cusumano E, Arrigo T, Gitto E, Salpietro C (2016) “Cumulative stress”: the effects of maternal and neonatal oxidative stress and oxidative stress-inducible genes on programming of atopy. Oxidative Med Cell Longev 2016:8651820.  https://doi.org/10.1155/2016/8651820 CrossRefGoogle Scholar
  43. 43.
    Chang HY, Suh DI, Yang SI, Kang MJ, Lee SY, Lee E, Choi IA, Lee KS, Shin YJ, Shin YH, Kim YH, Kim KW, Ahn K, Won HS, Choi SJ, Oh SY, Kwon JY, Kim YH, Park HJ, Lee KJ, Jun JK, Yu HS, Lee SH, Jung BK, Kwon JW, Choi YK, Do N, Bae YJ, Kim H, Chang WS, Kim EJ, Lee JK, Hong SJ (2016) Prenatal maternal distress affects atopic dermatitis in offspring mediated by oxidative stress. J Allergy Clin Immunol 138(2):468–475.e5.  https://doi.org/10.1016/j.jaci.2016.01.020 CrossRefPubMedGoogle Scholar
  44. 44.
    Blumer N, Herz U, Wegmann M, Renz H (2005) Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 35(3):397–402.  https://doi.org/10.1111/j.1365-2222.2005.02184.x CrossRefPubMedGoogle Scholar
  45. 45.
    Conrad ML, Ferstl R, Teich R, Brand S, Blumer N, Yildirim AO, Patrascan CC, Hanuszkiewicz A, Akira S, Wagner H, Holst O, von Mutius E, Pfefferle PI, Kirschning CJ, Garn H, Renz H (2009) Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med 206(13):2869–2877.  https://doi.org/10.1084/jem.20090845 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gray LEK, O’Hely M, Ranganathan S, Sly PD, Vuillermin P (2017) The maternal diet, gut bacteria, and bacterial metabolites during pregnancy influence offspring asthma. Front Immunol 8(365).  https://doi.org/10.3389/fimmu.2017.00365
  47. 47.
    Vuillermin PJ, Macia L, Nanan R, Tang MLK, Collier F, Brix S (2017) The maternal microbiome during pregnancy and allergic disease in the offspring. Semin Immunopathol 39(6):669–675.  https://doi.org/10.1007/s00281-017-0652-y CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, Steinert A, Heikenwalder M, Hapfelmeier S, Sauer U, McCoy KD, Macpherson AJ (2016) The maternal microbiota drives early postnatal innate immune development. Science 351(6279):1296–1302.  https://doi.org/10.1126/science.aad2571 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ege MJ, Bieli C, Frei R, van Strien RT, Riedler J, Ublagger E, Schram-Bijkerk D, Brunekreef B, van Hage M, Scheynius A, Pershagen G, Benz MR, Lauener R, von Mutius E, Braun-Fahrlander C, Study t P (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117(4):817–823.  https://doi.org/10.1016/j.jaci.2005.12.1307 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, Michel S, Tost J, Liu J, Genuneit J, Pfefferle P, Roponen M, Weber J, Braun-Fahrlander C, Riedler J, Lauener R, Vuitton DA, Dalphin JC, Pekkanen J, von Mutius E, Schaub B, Protection Against Allergy: Study in Rural Environments Study G (2014) Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol 133(2):551–559.  https://doi.org/10.1016/j.jaci.2013.06.034 CrossRefPubMedGoogle Scholar
  51. 51.
    Schaub B, Liu J, Hoppler S, Schleich I, Huehn J, Olek S, Wieczorek G, Illi S, von Mutius E (2009) Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 123(4):774–782 e775.  https://doi.org/10.1016/j.jaci.2009.01.056 CrossRefPubMedGoogle Scholar
  52. 52.
    Douwes J, Cheng S, Travier N, Cohet C, Niesink A, McKenzie J, Cunningham C, Le Gros G, von Mutius E, Pearce N (2008) Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 32(3):603–611.  https://doi.org/10.1183/09031936.00033707 CrossRefPubMedGoogle Scholar
  53. 53.
    von Mutius E (2016) The microbial environment and its influence on asthma prevention in early life. J Allergy Clin Immunol 137(3):680–689.  https://doi.org/10.1016/j.jaci.2015.12.1301 CrossRefGoogle Scholar
  54. 54.
    von Mutius E, Vercelli D (2010) Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 10(12):861–868.  https://doi.org/10.1038/nri2871 CrossRefGoogle Scholar
  55. 55.
    Altfeld M, Bunders MJ (2016) Impact of HIV-1 infection on the feto-maternal crosstalk and consequences for pregnancy outcome and infant health. Semin Immunopathol 38(6):727–738.  https://doi.org/10.1007/s00281-016-0578-9 CrossRefPubMedGoogle Scholar
  56. 56.
    McNally LM, Jeena PM, Gajee K, Thula SA, Sturm AW, Cassol S, Tomkins AM, Coovadia HM, Goldblatt D (2007) Effect of age, polymicrobial disease, and maternal HIV status on treatment response and cause of severe pneumonia in South African children: a prospective descriptive study. Lancet 369(9571):1440–1451.  https://doi.org/10.1016/s0140-6736(07)60670-9 CrossRefPubMedGoogle Scholar
  57. 57.
    Siberry GK, Leister E, Jacobson D, Foster SB, Seage GR, Lipshultz SE, Paul ME, Purswani M, Colin AA, Scott G, Shearer WT (2012) Increased risk of asthma and atopic dermatitis in perinatally HIV-infected children and adolescents. Clin Immunol 142(2):201–208.  https://doi.org/10.1016/j.clim.2011.10.005 CrossRefPubMedGoogle Scholar
  58. 58.
    Simani OE, Izu A, Violari A, Cotton MF, van Niekerk N, Adrian PV, Madhi SA (2014) Effect of HIV-1 exposure and antiretroviral treatment strategies in HIV-infected children on immunogenicity of vaccines during infancy. AIDS 28(4):531–541.  https://doi.org/10.1097/QAD.0000000000000127 CrossRefPubMedGoogle Scholar
  59. 59.
    Chen M, Zhang L (2011) Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 16(23–24):1007–1018.  https://doi.org/10.1016/j.drudis.2011.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chen T, Liu HX, Yan HY, Wu DM, Ping J (2016) Developmental origins of inflammatory and immune diseases. Mol Hum Reprod 22(8):858–865.  https://doi.org/10.1093/molehr/gaw036 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hong X, Wang X (2012) Early life precursors, epigenetics, and the development of food allergy. Semin Immunopathol 34(5):655–669.  https://doi.org/10.1007/s00281-012-0323-y CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9(2):83–89.  https://doi.org/10.1038/nri2474 CrossRefPubMedGoogle Scholar
  63. 63.
    Pincus M, Arck P (2012) Developmental programming of allergic diseases. Chem Immunol Allergy 98:70–84.  https://doi.org/10.1159/000336499 CrossRefPubMedGoogle Scholar
  64. 64.
    Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663.  https://doi.org/10.1002/eji.200838105 CrossRefPubMedGoogle Scholar
  65. 65.
    McStay CL, Prescott SL, Bower C, Palmer DJ (2017) Maternal folic acid supplementation during pregnancy and childhood allergic disease outcomes: a question of timing? Nutrients 9(2).  https://doi.org/10.3390/nu9020123 CrossRefGoogle Scholar
  66. 66.
    Guerra-Silveira F, Abad-Franch F (2013) Sex bias in infectious disease epidemiology: patterns and processes. PLoS One 8(4):e62390.  https://doi.org/10.1371/journal.pone.0062390 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Markle JG, Fish EN (2014) SeXX matters in immunity. Trends Immunol 35(3):97–104.  https://doi.org/10.1016/j.it.2013.10.006 CrossRefPubMedGoogle Scholar
  68. 68.
    Muenchhoff M, Goulder PJ (2014) Sex differences in pediatric infectious diseases. J Infect Dis 209(Suppl 3):S120–S126.  https://doi.org/10.1093/infdis/jiu232 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Osman M, Tagiyeva N, Wassall HJ, Ninan TK, Devenny AM, McNeill G, Helms PJ, Russell G (2007) Changing trends in sex specific prevalence rates for childhood asthma, eczema, and hay fever. Pediatr Pulmonol 42(1):60–65.  https://doi.org/10.1002/ppul.20545 CrossRefPubMedGoogle Scholar
  70. 70.
    Osman M, Hansell AL, Simpson CR, Hollowell J, Helms PJ (2007) Gender-specific presentations for asthma, allergic rhinitis and eczema in primary care. Prim Care Respir J 16(1):28–35.  https://doi.org/10.3132/pcrj.2007.00006 CrossRefPubMedGoogle Scholar
  71. 71.
    Pignataro FS, Bonini M, Forgione A, Melandri S, Usmani OS (2017) Asthma and gender: the female lung. Pharmacol Res 119:384–390.  https://doi.org/10.1016/j.phrs.2017.02.017 CrossRefPubMedGoogle Scholar
  72. 72.
    Ridolo E, Incorvaia C, Martignago I, Caminati M, Canonica GW, Senna G (2018) Sex in respiratory and skin allergies. Clin Rev Allergy Immunol.  https://doi.org/10.1007/s12016-017-8661-0
  73. 73.
    Zein JG, Erzurum SC (2015) Asthma is different in women. Curr Allergy Asthma Rep 15(6):28.  https://doi.org/10.1007/s11882-015-0528-y CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chiaroni-Clarke RC, Li YR, Munro JE, Chavez RA, Scurrah KJ, Pezic A, Akikusa JD, Allen RC, Piper SE, Becker ML, Thompson SD, Lie BA, Flato B, Forre O, Punaro M, Wise C, Saffery R, Finkel TH, Hakonarson H, Ponsonby AL, Ellis JA (2015) The association of PTPN22 rs2476601 with juvenile idiopathic arthritis is specific to females. Genes Immun 16(7):495–498.  https://doi.org/10.1038/gene.2015.32 CrossRefPubMedGoogle Scholar
  75. 75.
    Thierry S, Fautrel B, Lemelle I, Guillemin F (2014) Prevalence and incidence of juvenile idiopathic arthritis: a systematic review. Joint Bone Spine 81(2):112–117.  https://doi.org/10.1016/j.jbspin.2013.09.003 CrossRefPubMedGoogle Scholar
  76. 76.
    Hayter SM, Cook MC (2012) Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev 11(10):754–765.  https://doi.org/10.1016/j.autrev.2012.02.001 CrossRefPubMedGoogle Scholar
  77. 77.
    Robinson AB, Hoeltzel MF, Wahezi DM, Becker ML, Kessler EA, Schmeling H, Carrasco R, Huber AM, Feldman BM, Reed AM, Juvenile Myositis Carra Subgroup ftCRI (2014) Clinical characteristics of children with juvenile dermatomyositis: the Childhood Arthritis and Rheumatology Research Alliance Registry. Arthritis Care Res 66(3):404–410.  https://doi.org/10.1002/acr.22142 CrossRefGoogle Scholar
  78. 78.
    Banwell B, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M (2007) Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol 6(10):887–902.  https://doi.org/10.1016/S1474-4422(07)70242-9 CrossRefPubMedGoogle Scholar
  79. 79.
    Cappa M, Bizzarri C, Crea F (2010) Autoimmune thyroid diseases in children. J Thyroid Res 2011:675703.  https://doi.org/10.4061/2011/675703 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Skarpa V, Kousta E, Tertipi A, Anyfandakis K, Vakaki M, Dolianiti M, Fotinou A, Papathanasiou A (2011) Epidemiological characteristics of children with autoimmune thyroid disease. Hormones (Athens) 10(3):207–214CrossRefGoogle Scholar
  81. 81.
    Mina R, Brunner HI (2010) Pediatric lupus—are there differences in presentation, genetics, response to therapy, and damage accrual compared with adult lupus? Rheum Dis Clin N Am 36(1):53–80, vii–viii.  https://doi.org/10.1016/j.rdc.2009.12.012 CrossRefGoogle Scholar
  82. 82.
    Chiaroni-Clarke RC, Munro JE, Ellis JA (2016) Sex bias in paediatric autoimmune disease—not just about sex hormones? J Autoimmun 69:12–23.  https://doi.org/10.1016/j.jaut.2016.02.011 CrossRefPubMedGoogle Scholar
  83. 83.
    Harjutsalo V, Sjoberg L, Tuomilehto J (2008) Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371(9626):1777–1782.  https://doi.org/10.1016/S0140-6736(08)60765-5 CrossRefPubMedGoogle Scholar
  84. 84.
    Henderson P, Hansen R, Cameron FL, Gerasimidis K, Rogers P, Bisset WM, Reynish EL, Drummond HE, Anderson NH, Van Limbergen J, Russell RK, Satsangi J, Wilson DC (2012) Rising incidence of pediatric inflammatory bowel disease in Scotland. Inflamm Bowel Dis 18(6):999–1005.  https://doi.org/10.1002/ibd.21797 CrossRefPubMedGoogle Scholar
  85. 85.
    Herzog D, Buehr P, Koller R, Rueger V, Heyland K, Nydegger A, Spalinger J, Schibli S, Braegger CP, Swiss IBDCSG (2014) Gender differences in paediatric patients of the Swiss Inflammatory Bowel Disease cohort study. Pediatr Gastroenterol Hepatol Nutr 17(3):147–154.  https://doi.org/10.5223/pghn.2014.17.3.147 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hovde O, Moum BA (2012) Epidemiology and clinical course of Crohn’s disease: results from observational studies. World J Gastroenterol 18(15):1723–1731.  https://doi.org/10.3748/wjg.v18.i15.1723 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kappelman MD, Rifas-Shiman SL, Kleinman K, Ollendorf D, Bousvaros A, Grand RJ, Finkelstein JA (2007) The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin Gastroenterol Hepatol 5(12):1424–1429.  https://doi.org/10.1016/j.cgh.2007.07.012 CrossRefPubMedGoogle Scholar
  88. 88.
    Ostman J, Lonnberg G, Arnqvist HJ, Blohme G, Bolinder J, Ekbom Schnell A, Eriksson JW, Gudbjornsdottir S, Sundkvist G, Nystrom L (2008) Gender differences and temporal variation in the incidence of type 1 diabetes: results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983–2002. J Intern Med 263(4):386–394.  https://doi.org/10.1111/j.1365-2796.2007.01896.x CrossRefPubMedGoogle Scholar
  89. 89.
    Soltesz G, Patterson CC, Dahlquist G, Group ES (2007) Worldwide childhood type 1 diabetes incidence—what can we learn from epidemiology? Pediatr Diabetes 8(Suppl 6):6–14.  https://doi.org/10.1111/j.1399-5448.2007.00280.x CrossRefPubMedGoogle Scholar
  90. 90.
    Gold SM, Voskuhl RR (2016) Pregnancy and multiple sclerosis: from molecular mechanisms to clinical application. Semin Immunopathol 38(6):709–718.  https://doi.org/10.1007/s00281-016-0584-y CrossRefPubMedGoogle Scholar
  91. 91.
    Marion TN, Postlethwaite AE (2014) Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 36(5):495–517.  https://doi.org/10.1007/s00281-014-0440-x CrossRefPubMedGoogle Scholar
  92. 92.
    Ngo ST, Steyn FJ, McCombe PA (2014) Gender differences in autoimmune disease. Front Neuroendocrinol 35(3):347–369.  https://doi.org/10.1016/j.yfrne.2014.04.004 CrossRefPubMedGoogle Scholar
  93. 93.
    Reilly NR, Green PH (2012) Epidemiology and clinical presentations of celiac disease. Semin Immunopathol 34(4):473–478.  https://doi.org/10.1007/s00281-012-0311-2 CrossRefPubMedGoogle Scholar
  94. 94.
    Simmonds MJ, Kavvoura FK, Brand OJ, Newby PR, Jackson LE, Hargreaves CE, Franklyn JA, Gough SC (2014) Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis. J Clin Endocrinol Metab 99(1):E127–E131.  https://doi.org/10.1210/jc.2013-2667 CrossRefPubMedGoogle Scholar
  95. 95.
    Tobon GJ, Youinou P, Saraux A (2010) The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. Autoimmun Rev 9(5):A288–A292.  https://doi.org/10.1016/j.autrev.2009.11.019 CrossRefPubMedGoogle Scholar
  96. 96.
    Aiken CEM (2017) Chapter 20—sex-specific implications of exposure to an adverse intrauterine environment A2 - Legato, Marianne J. In: Principles of gender-specific medicine, Third edn. Academic Press, San Diego, pp 291–307.  https://doi.org/10.1016/B978-0-12-803506-1.00011-5 CrossRefGoogle Scholar
  97. 97.
    Bose S, Chiu YM, Hsu HL, Di Q, Rosa MJ, Lee A, Kloog I, Wilson A, Schwartz J, Wright RO, Cohen S, Coull BA, Wright RJ (2017) Prenatal nitrate exposure and childhood asthma. Influence of maternal prenatal stress and fetal sex. Am J Respir Crit Care Med 196(11):1396–1403.  https://doi.org/10.1164/rccm.201702-0421OC CrossRefPubMedGoogle Scholar
  98. 98.
    Filis P, Nagrath N, Fraser M, Hay DC, Iredale JP, O'Shaughnessy P, Fowler PA (2015) Maternal smoking dysregulates protein expression in second trimester human fetal livers in a sex-specific manner. J Clin Endocrinol Metab 100(6):E861–E870.  https://doi.org/10.1210/jc.2014-3941 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053.  https://doi.org/10.1093/hmg/ddp353 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Lee A, Leon Hsu HH, Mathilda Chiu YH, Bose S, Rosa MJ, Kloog I, Wilson A, Schwartz J, Cohen S, Coull BA, Wright RO, Wright RJ (2018) Prenatal fine particulate exposure and early childhood asthma: effect of maternal stress and fetal sex. J Allergy Clin Immunol 141(5):1880–1886.  https://doi.org/10.1016/j.jaci.2017.07.017 CrossRefPubMedGoogle Scholar
  101. 101.
    Carsin A, Mazenq J, Ilstad A, Dubus JC, Chanez P, Gras D (2016) Bronchial epithelium in children: a key player in asthma. Eur Respir Rev 25(140):158–169.  https://doi.org/10.1183/16000617.0101-2015 CrossRefPubMedGoogle Scholar
  102. 102.
    Zazara DE, Perani CV, Solano ME, Arck PC (2018) Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice. J Reprod Immunol 125:100–105.  https://doi.org/10.1016/j.jri.2017.07.001 CrossRefPubMedGoogle Scholar
  103. 103.
    Hsu HH, Chiu YH, Coull BA, Kloog I, Schwartz J, Lee A, Wright RO, Wright RJ (2015) Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am J Respir Crit Care Med 192(9):1052–1059.  https://doi.org/10.1164/rccm.201504-0658OC CrossRefPubMedGoogle Scholar
  104. 104.
    Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC (2007) The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am J Physiol Lung Cell Mol Physiol 293(2):L272–L278.  https://doi.org/10.1152/ajplung.00174.2007 CrossRefPubMedGoogle Scholar
  105. 105.
    Anadkat JS, Kuzniewicz MW, Chaudhari BP, Cole FS, Hamvas A (2012) Increased risk for respiratory distress among white, male, late preterm and term infants. J Perinatol 32(10):780–785.  https://doi.org/10.1038/jp.2011.191 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kaltofen T, Haase M, Thome UH, Laube M (2015) Male sex is associated with a reduced alveolar epithelial sodium transport. PLoS One 10(8):e0136178.  https://doi.org/10.1371/journal.pone.0136178 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Townsend EA, Miller VM, Prakash YS (2012) Sex differences and sex steroids in lung health and disease. Endocr Rev 33(1):1–47.  https://doi.org/10.1210/er.2010-0031 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Falagas ME, Mourtzoukou EG, Vardakas KZ (2007) Sex differences in the incidence and severity of respiratory tract infections. Respir Med 101(9):1845–1863.  https://doi.org/10.1016/j.rmed.2007.04.011 CrossRefPubMedGoogle Scholar
  109. 109.
    Chen YC, Huang YH, Sheen JM, Tain YL, Yu HR, Chen CC, Tiao MM, Kuo HC, Huang LT (2017) Prenatal dexamethasone exposure programs the development of the pancreas and the secretion of insulin in rats. Pediatr Neonatol 58(2):135–144.  https://doi.org/10.1016/j.pedneo.2016.02.008 CrossRefGoogle Scholar
  110. 110.
    Greene NH, Pedersen LH, Liu S, Olsen J (2013) Prenatal prescription corticosteroids and offspring diabetes: a national cohort study. Int J Epidemiol 42(1):186–193.  https://doi.org/10.1093/ije/dys228 CrossRefPubMedGoogle Scholar
  111. 111.
    Bertram C, Khan O, Ohri S, Phillips DI, Matthews SG, Hanson MA (2008) Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J Physiol 586(8):2217–2229.  https://doi.org/10.1113/jphysiol.2007.147967 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127(19):4195–4202PubMedGoogle Scholar
  113. 113.
    Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49(4):460–467.  https://doi.org/10.1203/00006450-200104000-00005 CrossRefPubMedGoogle Scholar
  114. 114.
    Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344.  https://doi.org/10.1038/nrn3818 CrossRefPubMedGoogle Scholar
  115. 115.
    Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. Nat Neurosci 18(10):1413–1420.  https://doi.org/10.1038/nn.4112 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Brunton PJ, Sullivan KM, Kerrigan D, Russell JA, Seckl JR, Drake AJ (2013) Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats. J Endocrinol 217(2):161–173.  https://doi.org/10.1530/JOE-12-0540 CrossRefPubMedGoogle Scholar
  117. 117.
    Cheong JN, Cuffe JS, Jefferies AJ, Anevska K, Moritz KM, Wlodek ME (2016) Sex-specific metabolic outcomes in offspring of female rats born small or exposed to stress during pregnancy. Endocrinology 157(11):4104–4120.  https://doi.org/10.1210/en.2016-1335 CrossRefPubMedGoogle Scholar
  118. 118.
    Shoener JA, Baig R, Page KC (2006) Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol Regul Integr Comp Phys 290(5):R1366–R1373.  https://doi.org/10.1152/ajpregu.00757.2004 CrossRefGoogle Scholar
  119. 119.
    Woods LL, Ingelfinger JR, Rasch R (2005) Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Phys 289(4):R1131–R1136.  https://doi.org/10.1152/ajpregu.00037.2003 CrossRefGoogle Scholar
  120. 120.
    Turcotte-Tremblay AM, Lim R, Laplante DP, Kobzik L, Brunet A, King S (2014) Prenatal maternal stress predicts childhood asthma in girls: project ice storm. Biomed Res Int 2014:201717.  https://doi.org/10.1155/2014/201717 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hartwig IR, Bruenahl CA, Ramisch K, Keil T, Inman M, Arck PC, Pincus M (2014) Reduced levels of maternal progesterone during pregnancy increase the risk for allergic airway diseases in females only. J Mol Med (Berl) 92(10):1093–1104.  https://doi.org/10.1007/s00109-014-1167-9 CrossRefGoogle Scholar
  122. 122.
    Pincus M, Keil T, Rucke M, Bruenahl C, Magdorf K, Klapp BF, Douglas AJ, Paus R, Wahn U, Arck P (2010) Fetal origin of atopic dermatitis. J Allergy Clin Immunol 125(1):273–275.e1-4.  https://doi.org/10.1016/j.jaci.2009.10.057 CrossRefPubMedGoogle Scholar
  123. 123.
    Rosa MJ, Just AC, Tamayo YOM, Schnaas L, Svensson K, Wright RO, Tellez Rojo MM, Wright RJ (2016) Prenatal and postnatal stress and wheeze in Mexican children: sex-specific differences. Ann Allergy Asthma Immunol 116(4):306–312.e1.  https://doi.org/10.1016/j.anai.2015.12.025 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Lee A, Mathilda Chiu YH, Rosa MJ, Jara C, Wright RO, Coull BA, Wright RJ (2016) Prenatal and postnatal stress and asthma in children: temporal- and sex-specific associations. J Allergy Clin Immunol 138(3):740–747.e3.  https://doi.org/10.1016/j.jaci.2016.01.014 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Virk J, Li J, Vestergaard M, Obel C, Lu M, Olsen J (2010) Early life disease programming during the preconception and prenatal period: making the link between stressful life events and type-1 diabetes. PLoS One 5(7):e11523.  https://doi.org/10.1371/journal.pone.0011523 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Devereux G, Litonjua AA, Turner SW, Craig LC, McNeill G, Martindale S, Helms PJ, Seaton A, Weiss ST (2007) Maternal vitamin D intake during pregnancy and early childhood wheezing. Am J Clin Nutr 85(3):853–859.  https://doi.org/10.1093/ajcn/85.3.853 CrossRefPubMedGoogle Scholar
  127. 127.
    Devereux G, Turner SW, Craig LC, McNeill G, Martindale S, Harbour PJ, Helms PJ, Seaton A (2006) Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am J Respir Crit Care Med 174(5):499–507.  https://doi.org/10.1164/rccm.200512-1946OC CrossRefPubMedGoogle Scholar
  128. 128.
    Chatzi L, Torrent M, Romieu I, Garcia-Esteban R, Ferrer C, Vioque J, Kogevinas M, Sunyer J (2008) Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax 63(6):507–513.  https://doi.org/10.1136/thx.2007.081745 CrossRefPubMedGoogle Scholar
  129. 129.
    Sewell DA, Hammersley VS, Robertson A, Devereux G, Stoddart A, Weir CJ, Worth A, Sheikh A (2017) A pilot randomised controlled trial investigating a Mediterranean diet intervention in pregnant women for the primary prevention of allergic diseases in infants. J Hum Nutr Diet 30(5):604–614.  https://doi.org/10.1111/jhn.12469 CrossRefPubMedGoogle Scholar
  130. 130.
    Pincus-Knackstedt MK, Joachim RA, Blois SM, Douglas AJ, Orsal AS, Klapp BF, Wahn U, Hamelmann E, Arck PC (2006) Prenatal stress enhances susceptibility of murine adult offspring toward airway inflammation. J Immunol 177(12):8484CrossRefGoogle Scholar
  131. 131.
    Gatford KL, Owens JA, Li S, Moss TJ, Newnham JP, Challis JR, Sloboda DM (2008) Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny. Am J Physiol Endocrinol Metab 295(1):E170–E178.  https://doi.org/10.1152/ajpendo.00047.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Yu HR, Kuo HC, Chen CC, Sheen JM, Tiao MM, Chen YC, Chang KA, Tain YL, Huang LT (2014) Prenatal dexamethasone exposure in rats results in long-term epigenetic histone modifications and tumour necrosis factor-alpha production decrease. Immunology 143(4):651–660.  https://doi.org/10.1111/imm.12346 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE, Rosenfeld CS (2010) Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci U S A 107(12):5557–5562.  https://doi.org/10.1073/pnas.1000440107 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, Roberts LK, Wong CH, Shim R, Robert R, Chevalier N, Tan JK, Marino E, Moore RJ, Wong L, McConville MJ, Tull DL, Wood LG, Murphy VE, Mattes J, Gibson PG, Mackay CR (2015) Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 6:7320.  https://doi.org/10.1038/ncomms8320 CrossRefPubMedGoogle Scholar
  135. 135.
    Cao L, Wang J, Zhu Y, Tseu I, Post M (2010) Maternal endotoxin exposure attenuates allergic airway disease in infant rats. Am J Physiol Lung Cell Mol Physiol 298(5):L670–L677.  https://doi.org/10.1152/ajplung.00399.2009 CrossRefPubMedGoogle Scholar
  136. 136.
    Chen T, Yan YE, Liu S, Liu HX, Yan HY, Hou LF, Qu W, Ping J (2016) Increased fetal thymocytes apoptosis contributes to prenatal nicotine exposure-induced Th1/Th2 imbalance in male offspring mice. Sci Rep 6:39013.  https://doi.org/10.1038/srep39013 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Meyer KF, Krauss-Etschmann S, Kooistra W, Reinders-Luinge M, Timens W, Kobzik L, Plosch T, Hylkema MN (2017) Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am J Physiol Lung Cell Mol Physiol 312(4):L542–L555.  https://doi.org/10.1152/ajplung.00271.2016 CrossRefPubMedGoogle Scholar
  138. 138.
    Meyer KF, Verkaik-Schakel RN, Timens W, Kobzik L, Plosch T, Hylkema MN (2017) The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific. Epigenetics 12(12):1076–1091.  https://doi.org/10.1080/15592294.2017.1403691 CrossRefPubMedGoogle Scholar
  139. 139.
    Solano ME, Kowal MK, O'Rourke GE, Horst AK, Modest K, Plosch T, Barikbin R, Remus CC, Berger RG, Jago C, Ho H, Sass G, Parker VJ, Lydon JP, DeMayo FJ, Hecher K, Karimi K, Arck PC (2015) Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation. J Clin Invest 125(4):1726–1738.  https://doi.org/10.1172/JCI68140 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Sathish V, Prakash YS (2016) Chapter 6—sex differences in pulmonary anatomy and physiology: implications for health and disease A2 - Neigh, Gretchen N. In: Mitzelfelt MM (ed) Sex differences in physiology. Academic Press, Boston, pp 89–103.  https://doi.org/10.1016/B978-0-12-802388-4.00006-9 CrossRefGoogle Scholar
  141. 141.
    Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y (2010) Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab 21(12):729–738.  https://doi.org/10.1016/j.tem.2010.09.001 CrossRefPubMedGoogle Scholar
  142. 142.
    Pelczar P, Witkowski M, Perez LG, Kempski J, Hammel AG, Brockmann L, Kleinschmidt D, Wende S, Haueis C, Bedke T, Witkowski M, Krasemann S, Steurer S, Booth CJ, Busch P, Konig A, Rauch U, Benten D, Izbicki JR, Rosch T, Lohse AW, Strowig T, Gagliani N, Flavell RA, Huber S (2016) A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science 354(6310):358–362.  https://doi.org/10.1126/science.aah5903 CrossRefPubMedGoogle Scholar
  143. 143.
    Celhar T, Fairhurst AM (2017) Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology (Oxford) 56(suppl_1):i88–i99.  https://doi.org/10.1093/rheumatology/kew400 CrossRefGoogle Scholar
  144. 144.
    Caplazi P, Baca M, Barck K, Carano RA, DeVoss J, Lee WP, Bolon B, Diehl L (2015) Mouse models of rheumatoid arthritis. Vet Pathol 52(5):819–826.  https://doi.org/10.1177/0300985815588612 CrossRefPubMedGoogle Scholar
  145. 145.
    Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, Obrosova IG (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55(12):3335–3343.  https://doi.org/10.2337/db06-0885 CrossRefPubMedGoogle Scholar
  146. 146.
    Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HT (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23(2):115–126.  https://doi.org/10.1016/j.immuni.2005.08.002 CrossRefPubMedGoogle Scholar
  147. 147.
    Van Belle TL, Taylor P, von Herrath MG (2009) Mouse models for type 1 diabetes. Drug Discov Today Dis Model 6(2):41–45.  https://doi.org/10.1016/j.ddmod.2009.03.008 CrossRefGoogle Scholar
  148. 148.
    Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7(11):904–912.  https://doi.org/10.1038/nri2190 CrossRefPubMedGoogle Scholar
  149. 149.
    Chen Y, Dales R, Lin M (2003) The epidemiology of chronic rhinosinusitis in Canadians. 113(7):1199–1205.  https://doi.org/10.1097/00005537-200307000-00016 CrossRefGoogle Scholar
  150. 150.
    Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8(9):737–744.  https://doi.org/10.1038/nri2394 CrossRefGoogle Scholar
  151. 151.
    Copeland KC, Chernausek S (2016) Mini-puberty and growth. Pediatrics 138(1). doi: https://doi.org/10.1542/peds.2016-1301 CrossRefGoogle Scholar
  152. 152.
    Quigley CA (2002) Editorial: the postnatal gonadotropin and sex steroid surge-insights from the androgen insensitivity syndrome. J Clin Endocrinol Metab 87(1):24–28.  https://doi.org/10.1210/jcem.87.1.8265 CrossRefPubMedGoogle Scholar
  153. 153.
    Khulan B, Cooper WN, Skinner BM, Bauer J, Owens S, Prentice AM, Belteki G, Constancia M, Dunger D, Affara NA (2012) Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum Mol Genet 21(9):2086–2101.  https://doi.org/10.1093/hmg/dds026 CrossRefPubMedGoogle Scholar
  154. 154.
    Kawai K, Msamanga G, Manji K, Villamor E, Bosch RJ, Hertzmark E, Fawzi WW (2010) Sex differences in the effects of maternal vitamin supplements on mortality and morbidity among children born to HIV-infected women in Tanzania. Br J Nutr 103(12):1784–1791.  https://doi.org/10.1017/S0007114509993862 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51(4):301–323.  https://doi.org/10.1159/000107673 CrossRefPubMedGoogle Scholar
  156. 156.
    Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638.  https://doi.org/10.1038/nri.2016.90 CrossRefGoogle Scholar
  157. 157.
    Sinha A, Madden J, Ross-Degnan D, Soumerai S, Platt R (2003) Reduced risk of neonatal respiratory infections among breastfed girls but not boys. Pediatrics 112(4):e303CrossRefGoogle Scholar
  158. 158.
    Welberg LA, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104(1):71–79CrossRefGoogle Scholar
  159. 159.
    Avitsur R, Hunzeker J, Sheridan JF (2006) Role of early stress in the individual differences in host response to viral infection. Brain Behav Immun 20(4):339–348.  https://doi.org/10.1016/j.bbi.2005.09.006 CrossRefPubMedGoogle Scholar
  160. 160.
    Cleal JK, Lewis RM (2016) Chapter 22—the placenta and developmental origins of health and disease A2 - Rosenfeld, Cheryl S. In: The epigenome and developmental origins of health and disease. Academic Press, Boston, p 439–461.  https://doi.org/10.1016/B978-0-12-801383-0.00022-0 CrossRefGoogle Scholar
  161. 161.
    Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT (2014) Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal–maternal interface. Mol Hum Reprod 20(8):810–819.  https://doi.org/10.1093/molehr/gau035 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Kalisch-Smith JI, Simmons DG, Dickinson H, Moritz KM (2017) Review: sexual dimorphism in the formation, function and adaptation of the placenta. Placenta 54:10–16.  https://doi.org/10.1016/j.placenta.2016.12.008 CrossRefPubMedGoogle Scholar
  163. 163.
    Sood R, Zehnder JL, Druzin ML, Brown PO (2006) Gene expression patterns in human placenta. Proc Natl Acad Sci U S A 103(14):5478–5483.  https://doi.org/10.1073/pnas.0508035103 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Goldenberg RL, Andrews WW, Faye-Petersen OM, Goepfert AR, Cliver SP, Hauth JC (2006) The Alabama Preterm Birth Study: intrauterine infection and placental histologic findings in preterm births of males and females less than 32 weeks. Am J Obstet Gynecol 195(6):1533–1537.  https://doi.org/10.1016/j.ajog.2006.05.023 CrossRefPubMedGoogle Scholar
  165. 165.
    Jahanfar S, Lim K (2018) Is there a relationship between fetal sex and placental pathological characteristics in twin gestations? BMC Pregnancy Childbirth 18(1):285.  https://doi.org/10.1186/s12884-018-1896-9 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Clifton VL (2010) Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31 Suppl:S33–S39.  https://doi.org/10.1016/j.placenta.2009.11.010 CrossRefPubMedGoogle Scholar
  167. 167.
    Cvitic S, Longtine MS, Hackl H, Wagner K, Nelson MD, Desoye G, Hiden U (2013) The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS One 8(10):e79233.  https://doi.org/10.1371/journal.pone.0079233 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Tuck A, Osei-Kumah A, Saif Z, Clifton V (2014) Distinct sex-specific gene expression changes in the human placenta in association with childhood allergy at 2 years.  https://doi.org/10.1530/repabs.1.P285
  169. 169.
    Prescott SL, Tulic M, Kumah AO, Richman T, Crook M, Martino D, Dunstan JA, Novakovic B, Saffery R, Clifton VL (2011) Reduced placental FOXP3 associated with subsequent infant allergic disease. J Allergy Clin Immunol 128(4):886–887.e5.  https://doi.org/10.1016/j.jaci.2011.05.017 CrossRefPubMedGoogle Scholar
  170. 170.
    Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C (2013) Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 4(1):5.  https://doi.org/10.1186/2042-6410-4-5 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Rosenfeld CS (2015) Sex-specific placental responses in fetal development. Endocrinology 156(10):3422–3434.  https://doi.org/10.1210/en.2015-1227 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vige A, Breton C, Reusens B, Remacle C, Vieau D, Ekstrom TJ, Jais JP, Junien C (2010) Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 5(12):e14398.  https://doi.org/10.1371/journal.pone.0014398 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C (2015) Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta. Physiol Rep 3(5).  https://doi.org/10.14814/phy2.12399 CrossRefGoogle Scholar
  174. 174.
    van Abeelen AF, de Rooij SR, Osmond C, Painter RC, Veenendaal MV, Bossuyt PM, Elias SG, Grobbee DE, van der Schouw YT, Barker DJ, Roseboom TJ (2011) The sex-specific effects of famine on the association between placental size and later hypertension. Placenta 32(9):694–698.  https://doi.org/10.1016/j.placenta.2011.06.012 CrossRefPubMedGoogle Scholar
  175. 175.
    Vickers MH, Clayton ZE, Yap C, Sloboda DM (2011) Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 152(4):1378–1387.  https://doi.org/10.1210/en.2010-1093 CrossRefPubMedGoogle Scholar
  176. 176.
    Solano ME, Holmes MC, Mittelstadt PR, Chapman KE, Tolosa E (2016) Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 38(6):739–763.  https://doi.org/10.1007/s00281-016-0575-z CrossRefPubMedGoogle Scholar
  177. 177.
    McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, Kilby MD, Stewart PM (2001) Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 86(10):4979–4983.  https://doi.org/10.1210/jcem.86.10.7893 CrossRefPubMedGoogle Scholar
  178. 178.
    Driver PM, Kilby MD, Bujalska I, Walker EA, Hewison M, Stewart PM (2001) Expression of 11 beta-hydroxysteroid dehydrogenase isozymes and corticosteroid hormone receptors in primary cultures of human trophoblast and placental bed biopsies. Mol Hum Reprod 7(4):357–363CrossRefGoogle Scholar
  179. 179.
    Clifton VL, Murphy VE (2004) Maternal asthma as a model for examining fetal sex-specific effects on maternal physiology and placental mechanisms that regulate human fetal growth. Placenta 25(Suppl A):S45–S52.  https://doi.org/10.1016/j.placenta.2004.01.004 CrossRefPubMedGoogle Scholar
  180. 180.
    Murphy VE, Gibson PG, Giles WB, Zakar T, Smith R, Bisits AM, Kessell CG, Clifton VL (2003) Maternal asthma is associated with reduced female fetal growth. Am J Respir Crit Care Med 168(11):1317–1323.  https://doi.org/10.1164/rccm.200303-374OC CrossRefPubMedGoogle Scholar
  181. 181.
    Howerton CL, Morgan CP, Fischer DB, Bale TL (2013) O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A 110(13):5169–5174.  https://doi.org/10.1073/pnas.1300065110 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Pantaleon M, Steane SE, McMahon K, Cuffe JSM, Moritz KM (2017) Placental O-GlcNAc-transferase expression and interactions with the glucocorticoid receptor are sex specific and regulated by maternal corticosterone exposure in mice. Sci Rep 7(1):2017.  https://doi.org/10.1038/s41598-017-01666-8 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Saif Z, Hodyl NA, Hobbs E, Tuck AR, Butler MS, Osei-Kumah A, Clifton VL (2014) The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta 35(4):260–268.  https://doi.org/10.1016/j.placenta.2014.01.012 CrossRefPubMedGoogle Scholar
  184. 184.
    Scott NM, Hodyl NA, Murphy VE, Osei-Kumah A, Wyper H, Hodgson DM, Smith R, Clifton VL (2009) Placental cytokine expression covaries with maternal asthma severity and fetal sex. J Immunol 182(3):1411–1420CrossRefGoogle Scholar
  185. 185.
    Stark MJ, Hodyl NA, Wright IM, Clifton VL (2011) Influence of sex and glucocorticoid exposure on preterm placental pro-oxidant-antioxidant balance. Placenta 32(11):865–870.  https://doi.org/10.1016/j.placenta.2011.08.010 CrossRefPubMedGoogle Scholar
  186. 186.
    Jennewein MF, Abu-Raya B, Jiang Y, Alter G, Marchant A (2017) Transfer of maternal immunity and programming of the newborn immune system. Semin Immunopathol 39(6):605–613.  https://doi.org/10.1007/s00281-017-0653-x CrossRefPubMedGoogle Scholar
  187. 187.
    Stelzer IA, Thiele K, Solano ME (2015) Maternal microchimerism: lessons learned from murine models. J Reprod Immunol 108:12–25.  https://doi.org/10.1016/j.jri.2014.12.007 CrossRefPubMedGoogle Scholar
  188. 188.
    Thompson EE, Myers RA, Du G, Aydelotte TM, Tisler CJ, Stern DA, Evans MD, Graves PE, Jackson DJ, Martinez FD, Gern JE, Wright AL, Lemanske RF, Ober C (2013) Maternal microchimerism protects against the development of asthma. J Allergy Clin Immunol 132(1):39–44.e34.  https://doi.org/10.1016/j.jaci.2012.12.1575 CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Harrington WE, Kanaan SB, Muehlenbachs A, Morrison R, Stevenson P, Fried M, Duffy PE, Nelson JL (2017) Maternal microchimerism predicts increased infection but decreased disease due to plasmodium falciparum during early childhood. J Infect Dis 215(9):1445–1451.  https://doi.org/10.1093/infdis/jix129 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Touzot F, Dal-Cortivo L, Verkarre V, Lim A, Crucis-Armengaud A, Moshous D, Héritier S, Frange P, Kaltenbach S, Blanche S, Picard C, Hacein-Bey-Abina S, Cavazzana-Calvo M, Fischer A (2012) Massive expansion of maternal T cells in response to EBV infection in a patient with SCID-Xl. Blood 120(9):1957–1959.  https://doi.org/10.1182/blood-2012-04-426833 CrossRefPubMedGoogle Scholar
  191. 191.
    Nelson JL (2012) The otherness of self: microchimerism in health and disease. Trends Immunol 33(8):421–427.  https://doi.org/10.1016/j.it.2012.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Wienecke J, Hebel K, Hegel KJ, Pierau M, Brune T, Reinhold D, Pethe A, Brunner-Weinzierl MC (2012) Pro-inflammatory effector Th cells transmigrate through anti-inflammatory environments into the murine fetus. Placenta 33(1):39–46.  https://doi.org/10.1016/j.placenta.2011.10.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Obstetrics and Fetal MedicineUniversity Medical Center HamburgHamburgGermany

Personalised recommendations