Advertisement

Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice

  • Bárbara A. A. Porto
  • Cinthia F. Monteiro
  • Éricka L. S. Souza
  • Paola C. L. Leocádio
  • Jacqueline I. Alvarez-Leite
  • Simone V. Generoso
  • Valbert N. Cardoso
  • Camila M. Almeida-Leite
  • Daniel A. Santos
  • Julliana R. A. Santos
  • Jacques R. Nicoli
  • Enrica Pessione
  • Flaviano S. MartinsEmail author
Original Article
  • 61 Downloads

Abstract

Purpose

Gastrointestinal mucositis is a major problem associated with cancer therapy. To minimize these deleterious effects, simultaneous administration of antioxidant components, such as selenium, can be considered. There is a growing interest in the use of yeasts because they are able to convert inorganic selenium into selenomethionine. In the present study, oral administration of Saccharomyces cerevisiae UFMG A-905 enriched with selenium was evaluated as an alternative in minimizing the side effects of 5FU-induced mucositis in mice.

Methods

Mice body weight, food consumption, faeces consistency and the presence of blood in faeces were assessed daily during experimental mucositis induced by 5-fluorouracil (5FU). Blood was used for intestinal permeability determination, and small intestine for oxidative stress, immunological and histopathological examination.

Results

The increased intestinal permeability observed with mucositis induction was partially reverted by S. cerevisiae and selenium-enriched yeast. Both treatments were able to reduce myeloperoxidase activity, but only selenium-enriched yeast reduced eosinophil peroxidase activity. CXCL1/KC levels, histopathological tissue damage and oxidative stress (lipid peroxidation and nitrite production) in the small intestine were reduced by both treatments; however, this reduction was always higher when treatment with selenium-enriched yeast was evaluated.

Conclusions

Results of the present study showed that the oral administration of S. cerevisiae UFMG A-905 protected mice against mucositis induced by 5-FU, and that this effect was potentiated when the yeast was enriched with selenium.

Keywords

Probiotics Saccharomyces cerevisiae UFMG A-905 Selenium Selenium-enriched yeast Mucositis 5-Fluorouracil 

Notes

Acknowledgements

This work was supported by grants from the Brazilian National Council for Scientific and Technological Development (CNPq), the Ministry of Science and Technology (MICT) and the Foundation for Research Support of the State of Minas Gerais (FAPEMIG—APQ-00593-14), Brazil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. BAAP was the recipient of a Ph.D.’s fellowship from CNPq. Professors JIAL, VNC, DAS, JRN and FSM are CNPq fellowship holders.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal experiments were carried out according to the standards set forth by the Brazilian National Council for Control of Animal Experimentation (CONCEA). This study was approved under Protocol no. 186/2012 by the Ethics Committee on the Use of Animals (CEUA/UFMG).

References

  1. 1.
    Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, McGuire DB, Migliorati C, Nicolatou-Galitis O, Peterson DE, Raber-Durlacher JE, Sonis ST, Elad S; Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) (2014) Clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120(10):1453–1461CrossRefGoogle Scholar
  2. 2.
    Ferreira TM, Leonel AJ, Melo MA, Santos RR, Cara DC, Cardoso VN, Correia MI, Alvarez-Leite JI (2012) Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 47(7):669–678CrossRefGoogle Scholar
  3. 3.
    Justino PF, Melo LF, Nogueira AF, Costa JV, Silva LM, Santos CM, Mendes WO, Costa MR, Franco AX, Lima AA, Ribeiro RA, Souza MH, Soares PM (2014) Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 111(9):1611–1621CrossRefGoogle Scholar
  4. 4.
    Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284CrossRefGoogle Scholar
  5. 5.
    Li C, Zhou HM (2011) The role of manganese superoxide dismutase in inflammation defense. Enzyme Res 2011:387176Google Scholar
  6. 6.
    Bordoni A, Danesi F, Malaguti M, Di Nunzio M, Pasqui F, Maranesi M, Luigi Biagi P (2008) Dietary selenium for the counteraction of oxidative damage: fortified foods or supplements? Br J Nutr 99(1):191–197CrossRefGoogle Scholar
  7. 7.
    Vieira AT, Silveira KD, Arruda MC, Fagundes CT, Gonçalves JL, Silva TA, Neves MJ, Menezes MA, Nicoli JR, Teixeira MM, Martins FS (2012) Treatment with Selemax®, a selenium-enriched yeast, ameliorates experimental arthritis in rats and mice. Br J Nutr 108(10): 1829–1838CrossRefGoogle Scholar
  8. 8.
    Vieira AT, Teixeira MM, Martins FS (2013) The role of probiotics and prebiotics in inducing gut immunity. Front Immunol 4:445CrossRefGoogle Scholar
  9. 9.
    Palma ML, Zamith-Miranda D, Martins FS, Bozza FA, Nimrichter L, Montero-Lomeli M, Marques ET Jr, Douradinha B (2015) Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement? Appl Microbiol Biotechnol 99(16):6563–6570CrossRefGoogle Scholar
  10. 10.
    Bastos RW, Pedroso SH, Vieira AT, Moreira LM, França CS, Cartelle CT, Arantes RM, Generoso SV, Cardoso VN, Neves MJ, Nicoli JR, Martins FS (2016) Saccharomyces cerevisiae UFMG A-905 treatment reduces intestinal damage in a murine model of irinotecan-induced mucositis. Benef Microbes 7(4):549–557CrossRefGoogle Scholar
  11. 11.
    Fonseca VMB, Milani TMS, Prado R, Bonato VLD, Ramos SG, Martins FS, Vianna EO, Borges MC (2017) Oral administration of Saccharomyces cerevisiae UFMG A-905 prevents allergic asthma in mice. Respirology 22(5):905–912CrossRefGoogle Scholar
  12. 12.
    Generoso SV, Viana M, Santos R, Martins FS, Machado JA, Arantes RM, Nicoli JR, Correia MI, Cardoso VN (2010) Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model. Arch Microbiol 192(6):477–484CrossRefGoogle Scholar
  13. 13.
    Martins FS, Nardi RMD, Arantes RME, Rosa CA, Neves MJ, Nicoli JR (2005) Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. J Gen Appl Microbiol 51(2):83–92CrossRefGoogle Scholar
  14. 14.
    Martins FS, Rodrigues AC, Tiago FC, Penna FJ, Rosa CA, Arantes RM, Nardi RM, Neves MJ, Nicoli JR (2007) Saccharomyces cerevisiae strain 905 reduces the translocation of Salmonella enterica serotype Typhimurium and stimulates the immune system in gnotobiotic and conventional mice. J Med Microbiol 56(3):352–359CrossRefGoogle Scholar
  15. 15.
    Martins FS, Elian SD, Vieira AT, Tiago FC, Martins AK, Silva FC, Souza EL, Sousa LP, Araújo HR, Pimenta PF, Bonjardim CA, Arantes RM, Teixeira MM, Nicoli JR (2011) Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol 301(4):359–364CrossRefGoogle Scholar
  16. 16.
    Tiago FC, Martins FS, Souza EL, Pimenta PF, Araujo HR, Castro IM, Brandão RL, Nicoli JR (2012) Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol 61(9):1194–1207CrossRefGoogle Scholar
  17. 17.
    Tiago FC, Porto BA, Ribeiro NS, Moreira LM, Arantes RM, Vieira AT, Teixeira MM, Generoso SV, Nascimento VN, Martins FS, Nicoli JR (2015) Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease. Benef Microbes 6(6):807–815CrossRefGoogle Scholar
  18. 18.
    Zamith-Miranda D, Palma ML, Matos GM, Schiebel JG, Maya-Monteiro CM, Aronovich M, Bozza PT, Bozza FA, Nimrichter L, Montero-Lomeli M, Marques ETA Jr, Martins FS, Douradinha B (2016) Lipid droplet levels vary heterogeneously in response to simulated gastrointestinal stresses in different probiotic Saccharomyces cerevisiae strains. J Funct Foods 21:193–200CrossRefGoogle Scholar
  19. 19.
    Porto BAA, Mangiapane E, Pessione A, Neves MJ, Pessione E, Martins FS (2015) Evaluation of sodium selenite effects on the potential probiotic Saccharomyces cerevisiae UFMG A-905: a physiological and proteomic analysis. J Funct Foods 17:828–836CrossRefGoogle Scholar
  20. 20.
    Maioli TU, de Melo Silva B, Dias MN, Paiva NC, Cardoso VN, Fernandes SO, Carneiro CM, Dos Santos Martins F, de Vasconcelos Generoso S (2014) Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice. J Negat Results Biomed 13:6CrossRefGoogle Scholar
  21. 21.
    Andrade ME, Santos RD, Soares AD, Costa KA, Fernandes SO, de Souza CM, Cassali GD, de Souza AL, Faria AM, Cardoso VN (2016) Pretreatment and treatment with l-arginine attenuate weight loss and bacterial translocation in dextran sulfate sodium colitis. JPEN J Parenter Enteral Nutr 40(8):1131–1139CrossRefGoogle Scholar
  22. 22.
    Arantes RME, Marche HHF, Bahia MT, Cunha FQ, Rossi MA, Silva JS (2004) Interferon-γ-induced nitric oxide causes intrinsic intestinal denervation in Trypanosoma cruzi-infected mice. Am J Pathol 164(4):1361–1368CrossRefGoogle Scholar
  23. 23.
    Soares PM, Mota JM, Gomes AS, Oliveira RB, Assreuy AM, Brito GA, Santos AA, Ribeiro RA, Souza MH (2008) Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemother Pharmacol 63(1):91–98CrossRefGoogle Scholar
  24. 24.
    Elian SD, Souza EL, Vieira AT, Teixeira MM, Arantes RM, Nicoli JR, Martins FS (2015) Bifidobacterium longum subsp. infantis BB-02 attenuates acute murine experimental model of inflammatory bowel disease. Benef Microbes 6(3):277–286CrossRefGoogle Scholar
  25. 25.
    Strath M, Warren DJ, Sanderson CJ (1985) Detection of eosinophils using an eosinophil peroxidase assay. Its use as an assay for eosinophil differentiation factors. J Immunol Methods 83(2):209–215CrossRefGoogle Scholar
  26. 26.
    Chen SM, Swilley S, Bell R, Rajanna S, Reddy SL, Rajanna B (2000) Lead induced alterations in nitrite and nitrate levels in different regions of the rat brain. Comp Biochem Physiol C Toxicol Pharmacol 125(3):315–323Google Scholar
  27. 27.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  28. 28.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  29. 29.
    Keefe DM (2007) Intestinal mucositis: mechanisms and management. Curr Opin Oncol 19(4):323–327CrossRefGoogle Scholar
  30. 30.
    Duncan M, Grant G (2003) Oral and intestinal mucositis - causes and possible treatments. Aliment Pharmacol Ther 18(9):853–874CrossRefGoogle Scholar
  31. 31.
    Tiago FCP, Martins FS, Rosa CA, Nardi RMD, Cara DC, Nicoli JR (2009) Physiological characterization of non-Saccharomyces yeasts from agro-industrial and environmental origins with possible probiotic function. World J Microbiol Biotechnol 25(4):657–666CrossRefGoogle Scholar
  32. 32.
    da Silva JF, Peluzio JM, Prado G, Madeira JE, Silva MO, de Morais PB, Rosa CA, Pimenta RS, Nicoli JR (2015) Use of probiotics to control aflatoxin production in peanut grains. ScientificWorldJournal 2015:959138Google Scholar
  33. 33.
    Justino PF, Melo LF, Nogueira AF, Morais CM, Mendes WO, Franco AX, Souza EP, Ribeiro RA, Souza MH, Soares PM (2015) Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 75(3):559–567CrossRefGoogle Scholar
  34. 34.
    Tang Y, Wu Y, Huang Z, Dong W, Deng Y, Wang F, Li M, Yuan J (2017) Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats. Nutrition 33:96–104CrossRefGoogle Scholar
  35. 35.
    Du XX, Doerschuk CM, Orazi A, Williams DA (1994) A bone marrow stromal-derived growth factor, interleukin-11, stimulates recovery of small intestinal mucosal cells after cytoablative therapy. Blood 83(1):33–37Google Scholar
  36. 36.
    Wang H, Jatmiko YD, Bastian SE, Mashtoub S, Howarth GS (2017) Effects of supernatants from Escherichia coli Nissle 1917 and Faecalibacterium prausnitzii on intestinal epithelial cells and a rat model of 5-fluorouracil-induced mucositis. Nutr Cancer 69(2):307–318CrossRefGoogle Scholar
  37. 37.
    Whitford EJ, Cummins AG, Butler RN, Prisciandaro LD, Fauser JK, Yazbeck R, Lawrence A, Cheah KY, Wright TH, Lymn KA, Howarth GS (2009) Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent 5-Fluorouracil (5-FU). Cancer Biol Ther 8(6):505–511CrossRefGoogle Scholar
  38. 38.
    Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM (2003) Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol 18(9):1095–1100CrossRefGoogle Scholar
  39. 39.
    Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, Sonis ST, Keefe DM (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev 33(5):448–460CrossRefGoogle Scholar
  40. 40.
    Sezer A, Usta U, Cicin I (2009) The effect of Saccharomyces boulardii on reducing irinotecan-induced intestinal mucositis and diarrhea. Med Oncol 26(3):350–357CrossRefGoogle Scholar
  41. 41.
    Smith CL, Geier MS, Yazbeck R, Torres DM, Butler RN, Howarth GS (2008) Lactobacillus fermentum BR11 and fructo-oligosaccharide partially reduce jejunal inflammation in a model of intestinal mucositis in rats. Nutr Cancer 60(6):757–767CrossRefGoogle Scholar
  42. 42.
    Pedroso SH, Vieira AT, Bastos RW, Oliveira JS, Cartelle CT, Arantes RM, Soares PM, Generoso SV, Cardoso VN, Teixeira MM, Nicoli JR, Martins FS (2015) Evaluation of mucositis induced by irinotecan after microbial colonization in germ-free mice. Microbiology 161(10):1950–1960CrossRefGoogle Scholar
  43. 43.
    Vieira AT, Fagundes CT, Alessandri AL, Castor MG, Guabiraba R, Borges VO, Silveira KD, Vieira EL, Gonçalves JL, Silva TA, Deruaz M, Proudfoot AE, Sousa LP, Teixeira MM (2009) Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am J Pathol 175(6):2382–2391CrossRefGoogle Scholar
  44. 44.
    Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809CrossRefGoogle Scholar
  45. 45.
    Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S, Horie T (2010) Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol 65(6):1117–1123CrossRefGoogle Scholar
  46. 46.
    Ferreira TM, Leonel AJ, Melo MA, Santos RR, Cara DC, Cardoso VN, Correia MI, Alvarez-Leite JI (2012) Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-fluorouracil administration. Lipids 477:669–678CrossRefGoogle Scholar
  47. 47.
    Ammendrup A, Maillard A, Nielsen K, Aabenhus Andersen N, Serup P, Dragsbaek Madsen O, Mandrup-Poulsen T, Bonny C (2000) The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells. Diabetes 49(9):1468–1476CrossRefGoogle Scholar
  48. 48.
    Baskin Y, Baskin H, Guner G, Tuzun E, Oto O (2003) The inversely proportional relation between nitric oxide and lipid peroxidation in atherosclerotic plaque formation in human. Int J Cardiol 91(1):53–57CrossRefGoogle Scholar
  49. 49.
    Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim Biophys Acta 1411(2–3):378–384CrossRefGoogle Scholar
  50. 50.
    Canali R, Vignolini F, Nobili F, Mengheri E (2000) Reduction of oxidative stress and cytokine-induced neutrophil chemoattractant (CINC) expression by red wine polyphenols in zinc deficiency induced intestinal damage of rat. Free Radic Biol Med 28(11):1661–1670CrossRefGoogle Scholar
  51. 51.
    Miyazono Y, Gao F, Hone T (2004) Oxidative stress contributes to methotrexate induced small intestinal toxicity in rats. Scand J Gastroenterol 39(11):1119–1127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bárbara A. A. Porto
    • 1
  • Cinthia F. Monteiro
    • 1
  • Éricka L. S. Souza
    • 1
  • Paola C. L. Leocádio
    • 2
  • Jacqueline I. Alvarez-Leite
    • 2
  • Simone V. Generoso
    • 3
  • Valbert N. Cardoso
    • 4
  • Camila M. Almeida-Leite
    • 5
  • Daniel A. Santos
    • 1
  • Julliana R. A. Santos
    • 6
  • Jacques R. Nicoli
    • 1
  • Enrica Pessione
    • 7
  • Flaviano S. Martins
    • 1
    Email author
  1. 1.Department of Microbiology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Biochemistry and Immunology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.Department of Basic Nursing, School of NursingFederal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Clinical and Toxicological Analysis, Faculty of PharmacyFederal University of Minas GeraisBelo HorizonteBrazil
  5. 5.Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
  6. 6.Laboratory of Environmental MicrobiologyCEUMA University (UNICEUMA)São LuísBrazil
  7. 7.Life Science and Systems Biology DepartmentUniversity of TorinoTorinoItaly

Personalised recommendations