Advertisement

Chemotherapy and cognition: comprehensive review on doxorubicin-induced chemobrain

  • Sara Emad El-Agamy
  • Amal Kamal Abdel-Aziz
  • Ahmed Esmat
  • Samar S. AzabEmail author
Review Article

Abstract

Chemobrain refers to a common sequela experienced by a substantial subset of cancer patients exposed to chemotherapeutic treatment, a phenomenon that dramatically deteriorates the survivors’ quality of life and prevents them from restoring their pre-cancer life. This review is intended to address the current knowledge regarding the mechanisms underlying the pathophysiology of the chemobrain phenomenon, with special focus on the antineoplastic agent ‘’doxorubicin’’, which has been shown to be implicated in strenuous central neurotoxicity despite being—almost entirely—peripherally confined. Moreover, the assessment of the post-chemotherapy cognitive impairment in both human and animal subjects, and the potential pharmacotherapy and behavioral intervention strategies are reviewed.

Keywords

Chemobrain Doxorubicin Hippocampus Memory Neuropsychological tests 

Notes

Acknowledgements

The authors would like to thank Ms. Amany El-Shahawy Abdel-Maged, National Organization for Research and Control of Biologicals (NORCB), Cairo, Egypt, for her contribution to gathering data about positron emission tomography (PET) for this manuscript.

Author contributions

All authors have read the journal’s authorship statement and agree to it. In accordance with your journal’s policy, we confirm that the material contained in the manuscript is original and has not been published and is not being submitted elsewhere. The authors qualify for authorship and have no financial or personal relationships that might lead to conflict of interest. This manuscript is being submitted online in accordance with your policies for this type of submission.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Cavaletti G, Alberti P, Marmiroli P (2015) Chemotherapy-induced peripheral neurotoxicity in cancer survivors: an underdiagnosed clinical entity? Am Soc Clin Oncol Educ Book.  https://doi.org/10.14694/EdBook_AM.2015.35.e553 CrossRefPubMedGoogle Scholar
  2. 2.
    Corrie PG (2008) Cytotoxic chemotherapy: clinical aspects. Medicine 36:24–28.  https://doi.org/10.1016/j.mpmed.2007.10.012 CrossRefGoogle Scholar
  3. 3.
    Silberfarb PM, Philibert D, Levine PM (1980) Psychosocial aspects of neoplastic disease: II. Affective and cognitive effects of chemotherapy in cancer patients. Am J Psychiatry 137(5):597–601.  https://doi.org/10.1176/ajp.137.5.597 CrossRefPubMedGoogle Scholar
  4. 4.
    Hayslip J, Dressler EV, Weiss H, Taylor TJ, Chambers M, Noel T, Miriyala S, Keeney JT, Ren X, Sultana R, Vore M, Butterfield DA, St Clair D, Moscow JA (2015) Plasma TNF-alpha and soluble TNF receptor levels after doxorubicin with or without co-administration of Mesna—a randomized cross-over clinical study. PLoS ONE 10(4):e0124988.  https://doi.org/10.1371/journal.pone.0124988 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA (2004) The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 100(11):2292–2299.  https://doi.org/10.1002/cncr.20272 CrossRefPubMedGoogle Scholar
  6. 6.
    Schagen SB, Wefel JS (2013) Chemotherapy-related changes in cognitive functioning. EJC Suppl EJC Off J EORTC Eur Organ Res Treat Cancer [et al] 11(2):225–232.  https://doi.org/10.1016/j.ejcsup.2013.07.007 CrossRefGoogle Scholar
  7. 7.
    Ahles TA, Saykin AJ (2002) Breast cancer chemotherapy-related cognitive dysfunction. Clin Breast Cancer 3(Suppl 3):S84–S90CrossRefPubMedGoogle Scholar
  8. 8.
    Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF (2000) Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 18(14):2695–2701.  https://doi.org/10.1200/JCO.2000.18.14.2695 CrossRefPubMedGoogle Scholar
  9. 9.
    Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Rev Clin Oncol 13(2):92–105.  https://doi.org/10.1038/nrclinonc.2015.152 CrossRefPubMedGoogle Scholar
  10. 10.
    Geschwind MD, Haman A, Miller BL (2007) Rapidly progressive dementia. Neurol Clin 25(3):783-vii.  https://doi.org/10.1016/j.ncl.2007.04.001 CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Aluise CD, Sultana R, Tangpong J, Vore M, St Clair D, Moscow JA, Butterfield DA (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Adv Exp Med Biol 678:147–156CrossRefPubMedGoogle Scholar
  12. 12.
    Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285 (pii:CMC-AbsEpub-014) CrossRefPubMedGoogle Scholar
  13. 13.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229.  https://doi.org/10.1124/pr.56.2.6 CrossRefPubMedGoogle Scholar
  14. 14.
    Bigotte L, Arvidson B, Olsson Y (1982) Cytofluorescence localization of adriamycin in the nervous system. I. Distribution of the drug in the central nervous system of normal adult mice after intravenous injection. Acta Neuropathol 57(2–3):121–129CrossRefPubMedGoogle Scholar
  15. 15.
    Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23(1):127–139.  https://doi.org/10.1016/j.nbd.2006.02.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Byeon HJ, le Thao Q, Lee S, Min SY, Lee ES, Shin BS, Choi HG, Youn YS (2016) Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release Off J Control Release Soc 225:301–313.  https://doi.org/10.1016/j.jconrel.2016.01.046 CrossRefGoogle Scholar
  17. 17.
    Schmidt M (2016) Dose-dense chemotherapy in metastatic breast cancer: shortening the time interval for a better therapeutic index. Breast Care (Basel, Switz) 11(1):22–26.  https://doi.org/10.1159/000442726 CrossRefGoogle Scholar
  18. 18.
    Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 19(4):424–436CrossRefGoogle Scholar
  19. 19.
    Green AE, Rose PG (2006) Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomed 1(3):229–239Google Scholar
  20. 20.
    Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA (2010) Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 166(3):796–807.  https://doi.org/10.1016/j.neuroscience.2010.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, Estus S, Butterfield DA (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39(11):1147–1154.  https://doi.org/10.1080/10715760500143478 CrossRefPubMedGoogle Scholar
  22. 22.
    Joshi G, Hardas S, Sultana R, St Clair DK, Vore M, Butterfield DA (2007) Glutathione elevation by gamma-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: implication for chemobrain. J Neurosci Res 85(3):497–503.  https://doi.org/10.1002/jnr.21158 CrossRefPubMedGoogle Scholar
  23. 23.
    Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2007) Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 100(1):191–201.  https://doi.org/10.1111/j.1471-4159.2006.04179.x CrossRefPubMedGoogle Scholar
  24. 24.
    Daiber A, Daub S, Bachschmid M, Schildknecht S, Oelze M, Steven S, Schmidt P, Megner A, Wada M, Tanabe T, Munzel T, Bottari S, Ullrich V (2013) Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications. Int J Mol Sci 14(4):7542–7570.  https://doi.org/10.3390/ijms14047542 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374.  https://doi.org/10.1089/ars.2007.1957 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Butterfield DA (2014) The 2013 SFRBM discovery award: selected discoveries from the Butterfield Laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 74:157–174.  https://doi.org/10.1016/j.freeradbiomed.2014.06.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, Clair DKS, Butterfield DA (2018) Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget 9(54):30324–30339.  https://doi.org/10.18632/oncotarget.25718 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK 3rd, Roux-Lombard P, Burger D (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8):2381–2389CrossRefPubMedGoogle Scholar
  29. 29.
    Aluise CD, Miriyala S, Noel T, Sultana R, Jungsuwadee P, Taylor TJ, Cai J, Pierce WM, Vore M, Moscow JA, St Clair DK, Butterfield DA (2011) 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-alpha release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 50(11):1630–1638.  https://doi.org/10.1016/j.freeradbiomed.2011.03.009 CrossRefPubMedGoogle Scholar
  30. 30.
    Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A, Kataoka Y (2010) Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254 (pii:JST.JSTAGE/jphs/09292SC) CrossRefPubMedGoogle Scholar
  31. 31.
    Butler MP, O’Connor JJ, Moynagh PN (2004) Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience 124(2):319–326.  https://doi.org/10.1016/j.neuroscience.2003.11.040 CrossRefPubMedGoogle Scholar
  32. 32.
    Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6(5):237–245.  https://doi.org/10.1016/j.cnr.2006.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031.  https://doi.org/10.1152/physrev.00049.2005 CrossRefPubMedGoogle Scholar
  34. 34.
    Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7(4):338–353.  https://doi.org/10.1016/j.nurt.2010.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Baune BTCM-L, Eyre H, Jawahar C, Anscomb H, Körner H (2012) Tumour necrosis factor-alpha mediated mechanisms of cognitive dysfunction. Transl Neurosci 3:263–277.  https://doi.org/10.2478/s13380-012-0027-8 CrossRefGoogle Scholar
  36. 36.
    Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80(3):194–210 (pii:S1074742703000881) CrossRefPubMedGoogle Scholar
  37. 37.
    Pal S, Ahir M, Sil PC (2012) Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves of Cajanus indicus L. via NF-kappaB and mitochondria dependent pathways. Free Radic Res 46(6):785–798.  https://doi.org/10.3109/10715762.2012.678841 CrossRefPubMedGoogle Scholar
  38. 38.
    El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS (2018) Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol 55(7):5727–5740.  https://doi.org/10.1007/s12035-017-0797-7 CrossRefPubMedGoogle Scholar
  39. 39.
    Kwatra M, Jangra A, Mishra M, Sharma Y, Ahmed S, Ghosh P, Kumar V, Vohora D, Khanam R (2016) Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus. Neurochem Res 41(9):2352–2366.  https://doi.org/10.1007/s11064-016-1949-2 CrossRefPubMedGoogle Scholar
  40. 40.
    Fernandez SP, Muzerelle A, Scotto-Lomassese S, Barik J, Gruart A, Delgado-Garcia JM, Gaspar P (2017) Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology 42(2):512–523.  https://doi.org/10.1038/npp.2016.134 CrossRefPubMedGoogle Scholar
  41. 41.
    Bethus I, Tse D, Morris RG (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30(5):1610–1618.  https://doi.org/10.1523/JNEUROSCI.2721-09.2010 CrossRefPubMedGoogle Scholar
  42. 42.
    Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350.  https://doi.org/10.1038/nrn2822 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231CrossRefPubMedGoogle Scholar
  44. 44.
    Squire LR (1993) The hippocampus and spatial memory. Trends Neurosci 16(2):56–57 (pii:0166-2236(93)90016-F) CrossRefPubMedGoogle Scholar
  45. 45.
    Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 18(7):1954–1965.  https://doi.org/10.1158/1078-0432.CCR-11-2000 CrossRefPubMedGoogle Scholar
  46. 46.
    Kitamura Y, Hattori S, Yoneda S, Watanabe S, Kanemoto E, Sugimoto M, Kawai T, Machida A, Kanzaki H, Miyazaki I, Asanuma M, Sendo T (2015) Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res 292:184–193.  https://doi.org/10.1016/j.bbr.2015.06.007 CrossRefPubMedGoogle Scholar
  47. 47.
    Kitamura Y, Kanemoto E, Sugimoto M, Machida A, Nakamura Y, Naito N, Kanzaki H, Miyazaki I, Asanuma M, Sendo T (2017) Influence of nicotine on doxorubicin and cyclophosphamide combination treatment-induced spatial cognitive impairment and anxiety-like behavior in rats. Naunyn Schmiedebergs Arch Pharmacol 390(4):369–378.  https://doi.org/10.1007/s00210-016-1338-z CrossRefPubMedGoogle Scholar
  48. 48.
    Kohman RA, Rhodes JS (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27(1):22–32.  https://doi.org/10.1016/j.bbi.2012.09.003 CrossRefPubMedGoogle Scholar
  49. 49.
    Seguin JA, Brennan J, Mangano E, Hayley S (2009) Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr Dis Treat 5:5–14PubMedPubMedCentralGoogle Scholar
  50. 50.
    Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, Jacobsen SE, Lindvall O (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26(38):9703–9712.  https://doi.org/10.1523/JNEUROSCI.2723-06.2006 CrossRefPubMedGoogle Scholar
  51. 51.
    Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S (2012) Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun 26(1):18–23.  https://doi.org/10.1016/j.bbi.2011.07.225 CrossRefPubMedGoogle Scholar
  52. 52.
    Liu RY, Zhang Y, Coughlin BL, Cleary LJ, Byrne JH (2014) Doxorubicin attenuates serotonin-induced long-term synaptic facilitation by phosphorylation of p38 mitogen-activated protein kinase. J Neurosci 34(40):13289–13300.  https://doi.org/10.1523/JNEUROSCI.0538-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Salas-Ramirez KY, Bagnall C, Frias L, Abdali SA, Ahles TA, Hubbard K (2015) Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res 292:133–141.  https://doi.org/10.1016/j.bbr.2015.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Guan Z, Kim JH, Lomvardas S, Holick K, Xu S, Kandel ER, Schwartz JH (2003) p38 MAP kinase mediates both short-term and long-term synaptic depression in aplysia. J Neurosci 23(19):7317–7325 (pii:23/19/7317) CrossRefPubMedGoogle Scholar
  55. 55.
    Lakshminarasimhan H, Coughlin BL, Darr AS, Byrne JH (2017) Characterization and reversal of Doxorubicin-mediated biphasic activation of ERK and persistent excitability in sensory neurons of Aplysia californica. Sci Rep 7(1):4533.  https://doi.org/10.1038/s41598-017-04634-4 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cardoso S, Santos RX, Carvalho C, Correia S, Pereira GC, Pereira SS, Oliveira PJ, Santos MS, Proenca T, Moreira PI (2008) Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic Biol Med 45(10):1395–1402.  https://doi.org/10.1016/j.freeradbiomed.2008.08.008 CrossRefPubMedGoogle Scholar
  57. 57.
    Tangpong J, Miriyala S, Noel T, Sinthupibulyakit C, Jungsuwadee P, St Clair DK (2011) Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience 175:292–299.  https://doi.org/10.1016/j.neuroscience.2010.11.007 CrossRefPubMedGoogle Scholar
  58. 58.
    Usta Y, Ismailoglu UB, Bakkaloglu A, Orhan D, Besbas N, Sahin-Erdemli I, Ozen S (2004) Effects of pentoxifylline in adriamycin-induced renal disease in rats. Pediatr Nephrol 19(8):840–843.  https://doi.org/10.1007/s00467-004-1538-5 CrossRefPubMedGoogle Scholar
  59. 59.
    Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS (2016) TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging (Albany NY) 8(12):3507–3519.  https://doi.org/10.18632/aging.101144 CrossRefGoogle Scholar
  60. 60.
    Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS (2018) Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci 86:65–71.  https://doi.org/10.1016/j.mcn.2017.11.014 CrossRefPubMedGoogle Scholar
  61. 61.
    Ahles TA, Saykin AJ, Noll WW, Furstenberg CT, Guerin S, Cole B, Mott LA (2003) The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology 12(6):612–619.  https://doi.org/10.1002/pon.742 CrossRefPubMedGoogle Scholar
  62. 62.
    Small BJ, Rawson KS, Walsh E, Jim HS, Hughes TF, Iser L, Andrykowski MA, Jacobsen PB (2011) Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors. Cancer 117(7):1369–1376.  https://doi.org/10.1002/cncr.25685 CrossRefPubMedGoogle Scholar
  63. 63.
    Morley KI, Montgomery GW (2001) The genetics of cognitive processes: candidate genes in humans and animals. Behav Genet 31(6):511–531CrossRefPubMedGoogle Scholar
  64. 64.
    McAllister TW, Ahles TA, Saykin AJ, Ferguson RJ, McDonald BC, Lewis LD, Flashman LA, Rhodes CH (2004) Cognitive effects of cytotoxic cancer chemotherapy: predisposing risk factors and potential treatments. Curr Psychiatry Rep 6(5):364–371CrossRefPubMedGoogle Scholar
  65. 65.
    Wang XM, Walitt B, Saligan L, Tiwari AF, Cheung CW, Zhang ZJ (2015) Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine 72(1):86–96.  https://doi.org/10.1016/j.cyto.2014.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kovalchuk A, Ilnytskyy Y, Rodriguez-Juarez R, Katz A, Sidransky D, Kolb B, Kovalchuk O (2017) Growth of malignant extracranial tumors alters microRNAome in the prefrontal cortex of TumorGraft mice. Oncotarget 8(51):88276–88293.  https://doi.org/10.18632/oncotarget.19835 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Boykoff N, Moieni M, Subramanian SK (2009) Confronting chemobrain: an in-depth look at survivors' reports of impact on work, social networks, and health care response. J Cancer Surviv 3(4):223–232.  https://doi.org/10.1007/s11764-009-0098-x CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hess LM, Insel KC (2007) Chemotherapy-related change in cognitive function: a conceptual model. Oncol Nurs Forum 34(5):981–994.  https://doi.org/10.1188/07.onf.981-994 CrossRefPubMedGoogle Scholar
  69. 69.
    Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol Off J Am Soc Clin Onc 30(30):3675–3686.  https://doi.org/10.1200/jco.2012.43.0116 CrossRefGoogle Scholar
  70. 70.
    Merriman JD, Aouizerat BE, Cataldo JK, Dunn L, Cooper BA, West C, Paul SM, Baggott CR, Dhruva A, Kober K, Langford DJ, Leutwyler H, Ritchie CS, Abrams G, Dodd M, Elboim C, Hamolsky D, Melisko M, Miaskowski C (2014) Association between an interleukin 1 receptor, type I promoter polymorphism and self-reported attentional function in women with breast cancer. Cytokine 65(2):192–201.  https://doi.org/10.1016/j.cyto.2013.11.003 CrossRefPubMedGoogle Scholar
  71. 71.
    Hensley ML, Peterson B, Silver RT, Larson RA, Schiffer CA, Szatrowski TP (2000) Risk factors for severe neuropsychiatric toxicity in patients receiving interferon alfa-2b and low-dose cytarabine for chronic myelogenous leukemia: analysis of Cancer and Leukemia Group B 9013. J Clin Oncol Off J Am Soc Clin Oncol 18(6):1301–1308.  https://doi.org/10.1200/jco.2000.18.6.1301 CrossRefGoogle Scholar
  72. 72.
    van Dam FS, Schagen SB, Muller MJ, Boogerd W, vd Wall E, Droogleever Fortuyn ME, Rodenhuis S (1998) Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst 90(3):210–218CrossRefPubMedGoogle Scholar
  73. 73.
    Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Hanscom BS, Mulrooney TJ, Schwartz GN, Kaufman PA (2008) Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat 110(1):143–152.  https://doi.org/10.1007/s10549-007-9686-5 CrossRefPubMedGoogle Scholar
  74. 74.
    Wagner LSJ, Butt Z, Lai J, Cella D (2009) Measuring patient self-reported cognitive function: development of the functional assessment of cancer therapy-cognitive function instrument. J Support Oncol 7(6):W32–W39Google Scholar
  75. 75.
    Selamat MH, Loh SY, Mackenzie L, Vardy J (2014) Chemobrain experienced by breast cancer survivors: a meta-ethnography study investigating research and care implications. PLoS ONE 9(9):e108002.  https://doi.org/10.1371/journal.pone.0108002 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ki Moore IM, Hockenberry MJ, Krull KR (2013) Cancer-related cognitive changes in children, adolescents and adult survivors of childhood cancers. Semin Oncol Nurs 29(4):248–259.  https://doi.org/10.1016/j.soncn.2013.08.005 CrossRefPubMedGoogle Scholar
  77. 77.
    Castellino SM, Ullrich NJ, Whelen MJ, Lange BJ (2014) Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/dju186 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lange M, Rigal O, Clarisse B, Giffard B, Sevin E, Barillet M, Eustache F, Joly F (2014) Cognitive dysfunctions in elderly cancer patients: a new challenge for oncologists. Cancer Treat Rev 40(6):810–817.  https://doi.org/10.1016/j.ctrv.2014.03.003 CrossRefPubMedGoogle Scholar
  79. 79.
    Lenz ER, Suppe F, Gift AG, Pugh LC, Milligan RA (1995) Collaborative development of middle-range nursing theories: toward a theory of unpleasant symptoms. ANS Adv Nurs Sci 17(3):1–13CrossRefPubMedGoogle Scholar
  80. 80.
    Lenz ER, Pugh LC, Milligan RA, Gift A, Suppe F (1997) The middle-range theory of unpleasant symptoms: an update. ANS Adv Nurs Sci 19(3):14–27CrossRefPubMedGoogle Scholar
  81. 81.
    Myers JS (2009) A comparison of the theory of unpleasant symptoms and the conceptual model of chemotherapy-related changes in cognitive function. Oncol Nurs Forum 36(1):E1–10.  https://doi.org/10.1188/09.onf.e1-e10 CrossRefPubMedGoogle Scholar
  82. 82.
    Kreukels BP, van Dam FS, Ridderinkhof KR, Boogerd W, Schagen SB (2008) Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin Breast Cancer 8(1):80–87.  https://doi.org/10.3816/CBC.2008.n.006 CrossRefPubMedGoogle Scholar
  83. 83.
    Conroy SK, McDonald BC, Smith DJ, Moser LR, West JD, Kamendulis LM, Klaunig JE, Champion VL, Unverzagt FW, Saykin AJ (2013) Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res Treat 137(2):493–502.  https://doi.org/10.1007/s10549-012-2385-x CrossRefPubMedGoogle Scholar
  84. 84.
    Deprez S, Amant F, Yigit R, Porke K, Verhoeven J, Van den Stock J, Smeets A, Christiaens MR, Leemans A, Van Hecke W, Vandenberghe J, Vandenbulcke M, Sunaert S (2011) Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp 32(3):480–493.  https://doi.org/10.1002/hbm.21033 CrossRefPubMedGoogle Scholar
  85. 85.
    Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12(7):703–708.  https://doi.org/10.1016/S1470-2045(10)70294-1 CrossRefPubMedGoogle Scholar
  86. 86.
    Moore HC (2014) An overview of chemotherapy-related cognitive dysfunction, or ‘chemobrain’. Oncology (Williston Park) 28(9):797–804 (pii:201376) Google Scholar
  87. 87.
    Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, van Dam FS (2005) Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat 94(1):53–61.  https://doi.org/10.1007/s10549-005-7093-3 CrossRefPubMedGoogle Scholar
  88. 88.
    Zimmer P, Mierau A, Bloch W, Struder HK, Hulsdunker T, Schenk A, Fiebig L, Baumann FT, Hahn M, Reinart N, Hallek M, Elter T (2015) Post-chemotherapy cognitive impairment in patients with B-cell non-Hodgkin lymphoma: a first comprehensive approach to determine cognitive impairments after treatment with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone or rituximab and bendamustine. Leuk Lymphoma 56(2):347–352.  https://doi.org/10.3109/10428194.2014.915546 CrossRefPubMedGoogle Scholar
  89. 89.
    Lim I, Joung HY, Yu AR, Shim I, Kim JS (2016) PET evidence of the effect of donepezil on cognitive performance in an animal model of chemobrain. Biomed Res Int 2016:6945415.  https://doi.org/10.1155/2016/6945415 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Horky LL, Gerbaudo VH, Zaitsev A, Plesniak W, Hainer J, Govindarajulu U, Kikinis R, Dietrich J (2014) Systemic chemotherapy decreases brain glucose metabolism. Ann Clin Transl Neurol 1(10):788–798.  https://doi.org/10.1002/acn3.121 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hurria A, Patel SK, Mortimer J, Luu T, Somlo G, Katheria V, Ramani R, Hansen K, Feng T, Chuang C, Geist CL, Silverman DH (2014) The effect of aromatase inhibition on the cognitive function of older patients with breast cancer. Clin Breast Cancer 14(2):132–140.  https://doi.org/10.1016/j.clbc.2013.10.010 CrossRefPubMedGoogle Scholar
  92. 92.
    Pomykala KL, Ganz PA, Bower JE, Kwan L, Castellon SA, Mallam S, Cheng I, Ahn R, Breen EC, Irwin MR, Silverman DH (2013) The association between pro-inflammatory cytokines, regional cerebral metabolism, and cognitive complaints following adjuvant chemotherapy for breast cancer. Brain Imaging Behav 7(4):511–523.  https://doi.org/10.1007/s11682-013-9243-2 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Liedke PE, Reolon GK, Kilpp B, Brunetto AL, Roesler R, Schwartsmann G (2009) Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav 94(2):239–243.  https://doi.org/10.1016/j.pbb.2009.09.001 CrossRefPubMedGoogle Scholar
  94. 94.
    Van Calsteren K, Hartmann D, Van Aerschot L, Verbesselt R, Van Bree R, D'Hooge R, Amant F (2009) Vinblastine and doxorubicin administration to pregnant mice affects brain development and behaviour in the offspring. NeuroToxicology 30(4):647–657.  https://doi.org/10.1016/j.neuro.2009.04.009 CrossRefPubMedGoogle Scholar
  95. 95.
    Barry RL, Byun NE, Tantawy MN, Mackey CA, Wilson GH 3rd, Stark AJ, Flom MP, Gee LC, Quarles CC (2018) In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction. Brain Imaging Behav 12(1):87–95.  https://doi.org/10.1007/s11682-017-9674-2 CrossRefPubMedGoogle Scholar
  96. 96.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60 (pii:0165-0270(84)90007-4) CrossRefPubMedGoogle Scholar
  97. 97.
    Philpot RM, Ficken M, Wecker L (2016) Doxorubicin and cyclophosphamide lead to long-lasting impairment of spatial memory in female, but not male mice. Behav Brain Res 307:165–175.  https://doi.org/10.1016/j.bbr.2016.04.017 CrossRefPubMedGoogle Scholar
  98. 98.
    Sleight A (2016) Coping with cancer-related cognitive dysfunction: a scoping review of the literature. Disabil Rehabil 38(4):400–408.  https://doi.org/10.3109/09638288.2015.1038364 CrossRefPubMedGoogle Scholar
  99. 99.
    Ferguson RJ, Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Mott LA (2007) Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology 16(8):772–777.  https://doi.org/10.1002/pon.1133 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ferguson RJ, McDonald BC, Rocque MA, Furstenberg CT, Horrigan S, Ahles TA, Saykin AJ (2012) Development of CBT for chemotherapy-related cognitive change: results of a waitlist control trial. Psychooncology 21(2):176–186.  https://doi.org/10.1002/pon.1878 CrossRefPubMedGoogle Scholar
  101. 101.
    Goedendorp MM, Knoop H, Gielissen MF, Verhagen CA, Bleijenberg G (2014) The effects of cognitive behavioral therapy for postcancer fatigue on perceived cognitive disabilities and neuropsychological test performance. J Pain Symptom Manag 47(1):35–44.  https://doi.org/10.1016/j.jpainsymman.2013.02.014 CrossRefGoogle Scholar
  102. 102.
    Rebok GW, Ball K, Guey LT, Jones RN, Kim HY, King JW, Marsiske M, Morris JN, Tennstedt SL, Unverzagt FW, Willis SL (2014) Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc 62(1):16–24.  https://doi.org/10.1111/jgs.12607 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kesler S, Hadi Hosseini SM, Heckler C, Janelsins M, Palesh O, Mustian K, Morrow G (2013) Cognitive training for improving executive function in chemotherapy-treated breast cancer survivors. Clin Breast Cancer 13(4):299–306.  https://doi.org/10.1016/j.clbc.2013.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Wong-Goodrich SJ, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW (2010) Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res 70(22):9329–9338.  https://doi.org/10.1158/0008-5472.CAN-10-1854 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Winocur G, Wojtowicz JM, Huang J, Tannock IF (2014) Physical exercise prevents suppression of hippocampal neurogenesis and reduces cognitive impairment in chemotherapy-treated rats. Psychopharmacology 231(11):2311–2320.  https://doi.org/10.1007/s00213-013-3394-0 CrossRefPubMedGoogle Scholar
  106. 106.
    Mustian KMJMC, Peppone LJ et al (2015) EXCAP exercise effects on cognitive impairment and inflammation: a URCC NCORP RCT in 479 cancer patients. J Clin Oncol 33(15 suppl):9504.  https://doi.org/10.1200/jco.2015.33.15_suppl.9504 CrossRefGoogle Scholar
  107. 107.
    Crowgey T, Peters KB, Hornsby WE, Lane A, McSherry F, Herndon JE 2nd, West MJ, Williams CL, Jones LW (2014) Relationship between exercise behavior, cardiorespiratory fitness, and cognitive function in early breast cancer patients treated with doxorubicin-containing chemotherapy: a pilot study. Appl Physiol Nutr Metab 39(6):724–729.  https://doi.org/10.1139/apnm-2013-0380 CrossRefPubMedGoogle Scholar
  108. 108.
    Kohli S, Fisher SG, Tra Y, Adams MJ, Mapstone ME, Wesnes KA, Roscoe JA, Morrow GR (2009) The effect of modafinil on cognitive function in breast cancer survivors. Cancer 115(12):2605–2616.  https://doi.org/10.1002/cncr.24287 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Lundorff LE, Jonsson BH, Sjogren P (2009) Modafinil for attentional and psychomotor dysfunction in advanced cancer: a double-blind, randomised, cross-over trial. Palliat Med 23(8):731–738.  https://doi.org/10.1177/0269216309106872 CrossRefPubMedGoogle Scholar
  110. 110.
    Blackhall L, Petroni G, Shu J, Baum L, Farace E (2009) A pilot study evaluating the safety and efficacy of modafinal for cancer-related fatigue. J Palliat Med 12(5):433–439.  https://doi.org/10.1089/jpm.2008.0230 CrossRefPubMedGoogle Scholar
  111. 111.
    Mar Fan HG, Clemons M, Xu W, Chemerynsky I, Breunis H, Braganza S, Tannock IF (2008) A randomised, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer 16(6):577–583.  https://doi.org/10.1007/s00520-007-0341-9 CrossRefPubMedGoogle Scholar
  112. 112.
    Thompson SJ, Leigh L, Christensen R, Xiong X, Kun LE, Heideman RL, Reddick WE, Gajjar A, Merchant T, Pui CH, Hudson MM, Mulhern RK (2001) Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J Clin Oncol 19(6):1802–1808.  https://doi.org/10.1200/JCO.2001.19.6.1802 CrossRefPubMedGoogle Scholar
  113. 113.
    Winocur G, Binns MA, Tannock I (2011) Donepezil reduces cognitive impairment associated with anti-cancer drugs in a mouse model. Neuropharmacology 61(8):1222–1228.  https://doi.org/10.1016/j.neuropharm.2011.07.013 CrossRefPubMedGoogle Scholar
  114. 114.
    Lawrence JA, Griffin L, Balcueva EP, Groteluschen DL, Samuel TA, Lesser GJ, Naughton MJ, Case LD, Shaw EG, Rapp SR (2016) A study of donepezil in female breast cancer survivors with self-reported cognitive dysfunction 1 to 5 years following adjuvant chemotherapy. J Cancer Surviv 10(1):176–184.  https://doi.org/10.1007/s11764-015-0463-x CrossRefPubMedGoogle Scholar
  115. 115.
    Mostert JP, Koch MW, Heerings M, Heersema DJ, De Keyser J (2008) Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci Ther 14(2):153–164.  https://doi.org/10.1111/j.1527-3458.2008.00040.x CrossRefPubMedGoogle Scholar
  116. 116.
    Mustafa S, Walker A, Bennett G, Wigmore PM (2008) 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 28(2):323–330.  https://doi.org/10.1111/j.1460-9568.2008.06325.x CrossRefPubMedGoogle Scholar
  117. 117.
    ElBeltagy M, Mustafa S, Umka J, Lyons L, Salman A, Chur-yoe GT, Bhalla N, Bennett G, Wigmore PM (2010) Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav Brain Res 208(1):112–117.  https://doi.org/10.1016/j.bbr.2009.11.017 CrossRefPubMedGoogle Scholar
  118. 118.
    Lyons L, ElBeltagy M, Bennett G, Wigmore P (2012) Fluoxetine counteracts the cognitive and cellular effects of 5-fluorouracil in the rat hippocampus by a mechanism of prevention rather than recovery. PLoS ONE 7(1):e30010.  https://doi.org/10.1371/journal.pone.0030010 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Fardell JE, Vardy J, Johnston IN, Winocur G (2011) Chemotherapy and cognitive impairment: treatment options. Clin Pharmacol Ther 90(3):366–376.  https://doi.org/10.1038/clpt.2011.112 CrossRefPubMedGoogle Scholar
  120. 120.
    Konat GW, Kraszpulski M, James I, Zhang HT, Abraham J (2008) Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab Brain Dis 23(3):325–333.  https://doi.org/10.1007/s11011-008-9100-y CrossRefPubMedGoogle Scholar
  121. 121.
    Ramalingayya GV, Sonawane V, Cheruku SP, Kishore A, Nayak PG, Kumar N, Shenoy RS, Nandakumar K (2017) Insulin protects against brain oxidative stress with an apparent effect on episodic memory in doxorubicin-induced cognitive dysfunction in Wistar rats. J Environ Pathol Toxicol Oncol 36(2):121–130.  https://doi.org/10.1615/JEnvironPatholToxicolOncol.2017017087 CrossRefPubMedGoogle Scholar
  122. 122.
    Ramalingayya GV, Cheruku SP, Nayak PG, Kishore A, Shenoy R, Rao CM, Krishnadas N (2017) Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Drug Des Dev Ther 11:1011–1026.  https://doi.org/10.2147/DDDT.S103511 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyAin Shams UniversityCairoEgypt

Personalised recommendations