Advertisement

Folate pathway genetic polymorphisms modulate methotrexate-induced toxicity in childhood acute lymphoblastic leukemia

  • Al-Motassem YousefEmail author
  • Rand Farhad
  • Daniah Alshamaseen
  • Abrar Alsheikh
  • Mohammed Zawiah
  • Taha Kadi
Original Article

Abstract

Background

Acute lymphoblastic leukemia (ALL) is one of the major malignancies affecting children in Jordan. Methotrexate (MTX) is the cornerstone of chemotherapy for ALL, and works by targeting enzymes involved in the folate pathway. We hypothesize that genetic polymorphisms of the folate pathway are associated with MTX toxicity in children with ALL.

Methods

A total of 64 children with ALL were included in this study; 31 (48.4%) boys and 33 (51.6%) girls aged 2–16 years. The folate pathway genes were genotyped using polymerase chain reaction followed by sequencing and studying the association between genetic polymorphisms and MTX toxicity.

Results

The immunophenotype was B-lineage in 55 patients (85.9%) and T-lineage in nine patients (14.1%). All genetic polymorphisms, except for dihydropyrimidine dehydrogenase polymorphisms, were associated with hematological toxicities and did not appear to precipitate any non-hematological adverse events. Patients with ALL carrying dominant alleles of methylene tetrahydrofolate (MTHFR) C677T and dihydrofolate reductase 19 bp deletion were at a higher risk of developing severe leucopenia [OR (95% CI) = 4.5 (1.2–17), p = 0.03; 5.4 (1.6–17.8); p = 0.006] while minor allele carriers of MTHFR A1298C were more likely to develop neutropenia [OR (95% CI) = 6.1 (1.3–29.5); 0.04]. Furthermore, dominant allele carriers of thymidylate synthase 1494 del6 were at a higher risk of developing neutropenia [OR (95% CI) = 6 (1.2–31.1); p = 0.04].

Conclusion

Genetic polymorphisms of the folate pathway may modulate MTX-induced toxicity in childhood ALL.

Keywords

ALL MTX Toxicity Genetic polymorphisms Folate 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The protocol of the study was approved by the institutional review board (IRB) of Royal Medical Services (IRB no. 1762, 14/2/2017), and conducted in concordance with the principles of the Declaration of Helsinki 1964 and its later amendments or comparable ethical standards.

Informed consent

Each patient provided their written informed consent.

Supplementary material

280_2019_3776_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 KB)

References

  1. 1.
    Jordan national cancer registry (2013) Cancer incidence in Jordan. http://www.moh.gov.jo/Echobusv3.0/SystemAssets/ba7d2a38-c47f-4058-b779-57e23c06292b.pdf. Accessed 5 Jan 2018
  2. 2.
    Globocan (2012) Estimated cancer incidence, mortality and prevalence worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 25 Dec 2017
  3. 3.
    Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552.  https://doi.org/10.1056/NEJMra1400972 CrossRefGoogle Scholar
  4. 4.
    Cooper SL, Brown PA (2015) Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin N Am 62(1):61CrossRefGoogle Scholar
  5. 5.
    Kishi S, Cheng C, French D, Pei D, Das S, Cook EH, Hijiya N, Rizzari C, Rosner GL, Frudakis T, Pui CH, Evans WE, Relling MV (2007) Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 109(10):4151–4157.  https://doi.org/10.1182/blood-2006-10-054528 CrossRefGoogle Scholar
  6. 6.
    Cheng KK (2008) Association of plasma methotrexate, neutropenia, hepatic dysfunction, nausea/vomiting and oral mucositis in children with cancer. Eur J Cancer Care (Engl) 17(3):306–311.  https://doi.org/10.1111/j.1365-2354.2007.00843.x CrossRefGoogle Scholar
  7. 7.
    Tian H, Cronstein BN (2007) Understanding the mechanisms of action of methotrexate. Bull NYU Hosp Jt Dis 65(3):168–173Google Scholar
  8. 8.
    Gellekink H, Blom HJ, van der Linden IJ, den Heijer M (2007) Molecular genetic analysis of the human dihydrofolate reductase gene: relation with plasma total homocysteine, serum and red blood cell folate levels. Eur J Hum Genet 15(1):103–109.  https://doi.org/10.1038/sj.ejhg.5201713 CrossRefGoogle Scholar
  9. 9.
    Shao W, Yuan Y, Li Y (2017) Association between MTHFR C677T polymorphism and methotrexate treatment outcome in rheumatoid arthritis patients: a systematic review and meta-analysis. Genet Test Mol Biomark 21(5):275–285CrossRefGoogle Scholar
  10. 10.
    Qiu Q, Huang J, Lin Y, Shu X, Fan H, Tu Z, Zhou Y, Xiao C (2017) Polymorphisms and pharmacogenomics for the toxicity of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic review and meta-analysis. Medicine (Baltimore) 96(11):e6337.  https://doi.org/10.1097/md.0000000000006337 CrossRefGoogle Scholar
  11. 11.
    Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolzan V, Jazbec J (2011) Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 67(10):993–1006.  https://doi.org/10.1007/s00228-011-1046-z CrossRefGoogle Scholar
  12. 12.
    Lambrecht L, Sleurs C, Labarque V, Dhooge C, Laenen A, Sinnaeve F, Renard M, Uyttebroeck A (2017) The role of the MTHFR C677T polymorphism in methotrexate-induced toxicity in pediatric osteosarcoma patients. Pharmacogenomics 18(8):787–795.  https://doi.org/10.2217/pgs-2017-0013 CrossRefGoogle Scholar
  13. 13.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113.  https://doi.org/10.1038/ng0595-111 CrossRefGoogle Scholar
  14. 14.
    van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62(5):1044–1051.  https://doi.org/10.1086/301825 CrossRefGoogle Scholar
  15. 15.
    Hagner N, Joerger M (2010) Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res 2:293Google Scholar
  16. 16.
    Lima A, Azevedo R, Sousa H, Seabra V, Medeiros R (2013) Current approaches for TYMS polymorphisms and their importance in molecular epidemiology and pharmacogenetics. Pharmacogenomics 14(11):1337–1351CrossRefGoogle Scholar
  17. 17.
    Mandola MV, Stoehlmacher J, Zhang W, Groshen S, Mimi CY, Iqbal S, Lenz H-J, Ladner RD (2004) A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenet Genom 14(5):319–327CrossRefGoogle Scholar
  18. 18.
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311CrossRefGoogle Scholar
  19. 19.
    Kristensen M, Pedersen P, Melsen G, Ellehauge J, Mejer J (2010) Variants in the dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidylate synthase genes predict early toxicity of 5-fluorouracil in colorectal cancer patients. J Int Med Res 38(3):870–883CrossRefGoogle Scholar
  20. 20.
    Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Coustan-Smith E, Kun LE, Jeha S, Cheng C, Howard SC, Simmons V, Bayles A, Metzger ML, Boyett JM, Leung W, Handgretinger R, Downing JR, Evans WE, Relling MV (2009) Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 360(26):2730–2741.  https://doi.org/10.1056/NEJMoa0900386 CrossRefGoogle Scholar
  21. 21.
    Yousef A-M, Zawiah M, Al-Yacoub S, Kadi T, Al-Ramadhani H (2018) The association of polymorphisms in folate-metabolizing genes with response to adjuvant chemotherapy of colorectal cancer. Cancer Chemother Pharmacol 82(2):237–243CrossRefGoogle Scholar
  22. 22.
    National Cancer Institute (2006) Common toxicity criteria version 3. https://www.eortc.be/services/doc/ctc/. Accessed 25 Dec 2017
  23. 23.
    Zgheib NK, Akra-Ismail M, Aridi C, Mahfouz R, Abboud MR, Solh H, Muwakkit SA (2014) Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genom 24(8):387–396.  https://doi.org/10.1097/fpc.0000000000000069 Google Scholar
  24. 24.
    Haase R, Elsner K, Merkel N, Stiefel M, Mauz-Korholz C, Kramm CM, Korholz D (2012) High dose methotrexate treatment in childhood ALL: pilot study on the impact of the MTHFR 677C> T and 1298A>C polymorphisms on MTX-related toxicity. Klin Padiatr 224(3):156–159.  https://doi.org/10.1055/s-0032-1304623 CrossRefGoogle Scholar
  25. 25.
    Gaunt TR, Rodriguez S, Zapata C, Day IN (2006) MIDAS: software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinformatics 7:227.  https://doi.org/10.1186/1471-2105-7-227 CrossRefGoogle Scholar
  26. 26.
    Seung AH (2013) Adverse effects of chemotherapy and targeted agents. In: Kimble K (ed) Applied therapeutics, 10th edn. Wolters Kluwer Health—Lippincott Williams & Wilkins, Philadelphia, p 2109Google Scholar
  27. 27.
    El-Khodary NM, El-Haggar SM, Eid MA, Ebeid EN (2012) Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol 29(3):2053–2062.  https://doi.org/10.1007/s12032-011-9997-6 CrossRefGoogle Scholar
  28. 28.
    Tantawy AA, El-Bostany EA, Adly AA, Abou El Asrar M, El-Ghouroury EA, Abdulghaffar EE (2010) Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinolysis 21(1):28–34.  https://doi.org/10.1097/MBC.0b013e32833135e9 CrossRefGoogle Scholar
  29. 29.
    Kaluzna E, Strauss E, Zajac-Spychala O, Gowin E, Swiatek-Koscielna B, Nowak J, Fichna M, Mankowski P, Januszkiewicz-Lewandowska D (2015) Functional variants of gene encoding folate metabolizing enzyme and methotrexate-related toxicity in children with acute lymphoblastic leukemia. Eur J Clin Pharmacol 769:93–99.  https://doi.org/10.1016/j.ejphar.2015.10.058 CrossRefGoogle Scholar
  30. 30.
    D’Angelo V, Ramaglia M, Iannotta A, Crisci S, Indolfi P, Francese M, Affinita MC, Pecoraro G, Napolitano A, Fusco C, Oreste M, Indolfi C, Casale F (2011) Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol 68(5):1339–1346.  https://doi.org/10.1007/s00280-011-1665-1 CrossRefGoogle Scholar
  31. 31.
    Araoz HV, D’Aloi K, Foncuberta ME, Sanchez La Rosa CG, Alonso CN, Chertkoff L, Felice M (2015) Pharmacogenetic studies in children with acute lymphoblastic leukemia in Argentina. Leuk Lymphoma 56(5):1370–1378.  https://doi.org/10.3109/10428194.2014.951844 CrossRefGoogle Scholar
  32. 32.
    Giletti A, Vital M, Lorenzo M, Cardozo P, Borelli G, Gabus R, Martinez L, Diaz L, Assar R, Rodriguez MN, Esperon P (2017) Methotrexate pharmacogenetics in Uruguayan adults with hematological malignant diseases. Eur J Pharm Sci 109:480–485.  https://doi.org/10.1016/j.ejps.2017.09.006 CrossRefGoogle Scholar
  33. 33.
    Costea I, Moghrabi A, Laverdiere C, Graziani A, Krajinovic M (2006) Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica 91(8):1113–1116Google Scholar
  34. 34.
    Ramirez-Pacheco A, Moreno-Guerrero S, Alamillo I, Medina-Sanson A, Lopez B, Moreno-Galvan M (2016) Mexican childhood acute lymphoblastic leukemia: a pilot study of the MDR1 and MTHFR gene polymorphisms and their associations with clinical outcomes. Genet Test Mol Biomark 20(10):597–602.  https://doi.org/10.1089/gtmb.2015.0287 CrossRefGoogle Scholar
  35. 35.
    Gervasini G, De Murillo SG, Jiménez M, María D, Vagace JM (2017) Dihydrofolate reductase genetic polymorphisms affect methotrexate dose requirements in pediatric patients with acute lymphoblastic leukemia on maintenance therapy. J Pediatr Hematol Oncol 39(8):589–595CrossRefGoogle Scholar
  36. 36.
    Ongaro A, De Mattei M, Della Porta MG, Rigolin G, Ambrosio C, Di Raimondo F, Pellati A, Masieri FF, Caruso A, Catozzi L, Gemmati D (2009) Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica 94(10):1391–1398.  https://doi.org/10.3324/haematol.2009.008326 CrossRefGoogle Scholar
  37. 37.
    de Deus DM, de Lima EL, Seabra Silva RM, Leite EP, Cartaxo Muniz MT (2012) Influence of methylenetetrahydrofolate reductase C677T, A1298C, and G80A polymorphisms on the survival of pediatric patients with acute lymphoblastic leukemia. Leuk Res Treat 2012:292043.  https://doi.org/10.1155/2012/292043 Google Scholar
  38. 38.
    Kałużna EM, Strauss E, Świątek-Kościelna B, Zając-Spychała O, Gowin E, Nowak JS, Rembowska J, Januszkiewicz-Lewandowska D (2017) The methylenetetrahydrofolate reductase 677T-1298C haplotype is a risk factor for acute lymphoblastic leukemia in children. Medicine 96(51):e9290CrossRefGoogle Scholar
  39. 39.
    Kaluzna E, Strauss E, Zajac-Spychala O, Gowin E, Swiatek-Koscielna B, Nowak J, Fichna M, Mankowski P, Januszkiewicz-Lewandowska D (2015) Functional variants of gene encoding folate metabolizing enzyme and methotrexate-related toxicity in children with acute lymphoblastic leukemia. Eur J Pharmacol 769:93–99.  https://doi.org/10.1016/j.ejphar.2015.10.058 CrossRefGoogle Scholar
  40. 40.
    Mosaad YM, Abousamra NK, Elashery R, Fawzy IM, Eldein OA, Sherief DM, El Azab HM (2015) Methylenetetrahydrofolate reductase C677T and A1298C polymorphism and susceptibility to acute lymphoblastic leukemia in a cohort of Egyptian children. Leuk Lymphoma 56(9):2699–2705.  https://doi.org/10.3109/10428194.2015.1004170 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biopharmaceutics and Clinical Pharmacy, School of PharmacyThe University of JordanAmmanJordan

Personalised recommendations