SPP1 inhibition improves the cisplatin chemo-sensitivity of cervical cancer cell lines

  • Xing Chen
  • Dongsheng Xiong
  • Liya Ye
  • Huichun Yang
  • Shuangshuang Mei
  • Jinhong Wu
  • Shanshan Chen
  • Ruoran MiEmail author
Original Article



Cisplatin (DDP)-based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. In the present study, we aimed to explore the effects of SPP1 on the proliferation and apoptosis rate of the HeLa cervical cancer cell line with cisplatin (DDP) resistance.


Microarray analysis was employed to select differentially expressed genes in cervical cancer tissues and adjacent tissues. Then, we established a DDP-resistant HeLa cell line (res-HeLa). Western blotting was used to detect SPP1 expression in both tissue and cells. After the transfection with si-SPP1 and pcDNA3.1-SPP1, colony formation and MTT assays were applied to detect cell proliferation changes. Flow cytometry was employed to detect the cell apoptosis rate. Western blotting was performed to verify the activation of PI3K/Akt signal pathway proteins related to DDP resistance.


SPP1 was overexpressed in cervical cancer tissues and cell lines. Compared to normal HeLa cells, expression of SPP1 was significantly enhanced in res-HeLa cells. SPP1 knockdown resulted in repressed proliferation and enhanced apoptosis of res-HeLa cells, which could be reversed by SPP1 overexpression in HeLa cells. Additionally, downregulation of SPP1 improved the DDP sensitivity of HeLa by inhibiting the PI3K/Akt signaling pathway.


SPP1 inhibition could suppress proliferation, induce apoptosis and increase the DDP chemo-sensitivity of HeLa cells.


SPP1 Cervical cancer HeLa DDP PI3K/Akt Resistance 


Compliance with ethical standards

Conflict of interest

The authors declare that there are no competing interests associated with the manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of General Hospital of Tianjin Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Zhang YH, Wang JJ, Li M, Zheng HX, Xu L, Chen YG (2016) Matrix metallopeptidase 14 plays an important role in regulating tumorigenic gene expression and invasion ability of HeLa cells. Int J Gynecol Cancer 26(3):600–606. CrossRefPubMedGoogle Scholar
  2. 2.
    Sun XL, Wang HB, Wang ZQ, Cao TT, Yang X, Han JS, Wu YF, Reilly KH, Wang JL (2017) Effect of transcutaneous electrical stimulation treatment on lower urinary tract symptoms after class III radical hysterectomy in cervical cancer patients: study protocol for a multicentre, randomized controlled trial. BMC Cancer 17(1):416. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marchetti C, De Felice F, Di Pinto A, Romito A, Musella A, Palaia I, Monti M, Tombolin V, Muzii L, Benedetti Panici P (2018) Survival nomograms after curative neoadjuvant chemotherapy and radical surgery for stage IB2-IIIB cervical cancer. Cancer Res Treat 50(3):768–776. CrossRefPubMedGoogle Scholar
  4. 4.
    Filippova M, Filippov V, Williams VM, Zhang K, Kokoza A, Bashkirova S, Duerksen-Hughes P (2014) Cellular levels of oxidative stress affect the response of cervical cancer cells to chemotherapeutic agents. Biomed Res Int 2014:574659. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. CrossRefPubMedGoogle Scholar
  6. 6.
    Pariente R, Pariente JA, Rodriguez AB, Espino J (2016) Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 60(1):55–64. CrossRefPubMedGoogle Scholar
  7. 7.
    Agoni L, Basu I, Gupta S, Alfieri A, Gambino A, Goldberg GL, Reddy EP, Guha C (2014) Rigosertib is a more effective radiosensitizer than cisplatin in concurrent chemoradiation treatment of cervical carcinoma, in vitro and in vivo. Int J Radiat Oncol Biol Phys 88(5):1180–1187. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang B, Huang Z, Gao R, Zeng Z, Yang W, Sun Y, Wei W, Wu Z, Yu L, Li Q, Zhang S, Li F, Liu G, Liu B, Leng L, Zhan W, Yu Y, Yang G, Zhou S (2017) Expression of long noncoding RNA urothelial cancer associated 1 promotes cisplatin resistance in cervical cancer. Cancer Biother Radiopharm 32(3):101–110. CrossRefPubMedGoogle Scholar
  9. 9.
    Casagrande N, De Paoli M, Celegato M, Borghese C, Mongiat M, Colombatti A, Aldinucci D (2013) Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol Oncol 131(3):744–752. CrossRefPubMedGoogle Scholar
  10. 10.
    Liu G, Fan X, Tang M, Chen R, Wang H, Jia R, Zhou X, Jing W, Wang H, Yang Y, Yin F, Wei H, Li B, Zhao J (2016) Osteopontin induces autophagy to promote chemo-resistance in human hepatocellular carcinoma cells. Cancer Lett 383(2):171–182. CrossRefPubMedGoogle Scholar
  11. 11.
    Qin H, Wang R, Wei G, Wang H, Pan G, Hu R, Wei Y, Tang R, Wang J (2018) Overexpression of osteopontin promotes cell proliferation and migration in human nasopharyngeal carcinoma and is associated with poor prognosis. Eur Arch Otorhinolaryngol 275(2):525–534. CrossRefPubMedGoogle Scholar
  12. 12.
    Anborgh PH, Mutrie JC, Tuck AB, Chambers AF (2010) Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med 14(8):2037–2044. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ruberti S, Bianchi E, Guglielmelli P, Rontauroli S, Barbieri G, Tavernari L, Fanelli T, Norfo R, Pennucci V, Fattori GC, Mannarelli C, Bartalucci N, Mora B, Elli L, Avanzini MA, Rossi C, Salmoiraghi S, Zini R, Salati S, Prudente Z, Rosti V, Passamonti F, Rambaldi A, Ferrari S, Tagliafico E, Vannucchi AM, Manfredini R (2018) Involvement of MAF/SPP1 axis in the development of bone marrow fibrosis in PMF patients. Leukemia 32(2):438–449. CrossRefPubMedGoogle Scholar
  14. 14.
    Hao C, Cui Y, Hu MU, Zhi X, Zhang L, Li W, Wu W, Cheng S, Jiang WG (2017) OPN-a splicing variant expression in non-small cell lung cancer and its effects on the bone metastatic abilities of lung cancer cells in vitro. Anticancer Res 37(5):2245–2254. CrossRefPubMedGoogle Scholar
  15. 15.
    Kijewska M, Kocyk M, Kloss M, Stepniak K, Korwek Z, Polakowska R, Dabrowski M, Gieryng A, Wojtas B, Ciechomska IA, Kaminska B (2017) The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma. Oncotarget 8(10):16340–16355. CrossRefPubMedGoogle Scholar
  16. 16.
    Chang H, Li X, Cai Q, Li C, Tian L, Chen J, Xing X, Gan Y, Ouyang W, Yang Z (2017) The PI3K/Akt/mTOR pathway is involved in CVB3-induced autophagy of HeLa cells. Int J Mol Med 40(1):182–192. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shu XR, Wu J, Sun H, Chi LQ, Wang JH (2015) PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol 10:177. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Song J, Li Y (2017) miR-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells. Cancer Sci 108(1):23–31. CrossRefPubMedGoogle Scholar
  19. 19.
    Johanneson B, Chen D, Enroth S, Cui T, Gyllensten U (2014) Systematic validation of hypothesis-driven candidate genes for cervical cancer in a genome-wide association study. Carcinogenesis 35(9):2084–2088. CrossRefPubMedGoogle Scholar
  20. 20.
    Giacopelli F, Marciano R, Pistorio A, Catarsi P, Canini S, Karsenty G, Ravazzolo R (2004) Polymorphisms in the osteopontin promoter affect its transcriptional activity. Physiol Genom 20(1):87–96. CrossRefGoogle Scholar
  21. 21.
    Sharma P, Kumar S, Kundu GC (2010) Transcriptional regulation of human osteopontin promoter by histone deacetylase inhibitor, trichostatin A in cervical cancer cells. Mol Cancer 9:178. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cho H, Hong SW, Oh YJ, Kim MA, Kang ES, Lee JM, Kim SW, Kim SH, Kim JH, Kim YT, Lee K (2008) Clinical significance of osteopontin expression in cervical cancer. J Cancer Res Clin Oncol 134(8):909–917. CrossRefPubMedGoogle Scholar
  23. 23.
    Song JY, Lee JK, Lee NW, Jung HH, Kim SH, Lee KW (2008) Microarray analysis of normal cervix, carcinoma in situ, and invasive cervical cancer: identification of candidate genes in pathogenesis of invasion in cervical cancer. Int J Gynecol Cancer 18(5):1051–1059. CrossRefPubMedGoogle Scholar
  24. 24.
    Li F, Guo Y, Han L, Duan Y, Fang F, Niu S, Ba Q, Zhu H, Kong F, Lin C, Wen X (2012) In vitro and in vivo growth inhibition of drug-resistant ovarian carcinoma cells using a combination of cisplatin and a TRAIL-encoding retrovirus. Oncol Lett 4(6):1254–1258. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji Y, Zhang YW, Xue SL, Zhang YX, Yang YF, Yu MM (2016) MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase. Am J Cancer Res 6(11):2690–2699PubMedPubMedCentralGoogle Scholar
  26. 26.
    Qian C, Li P, Yan W, Shi L, Zhang J, Wang Y, Liu H, You Y (2015) Downregulation of osteopontin enhances the sensitivity of glioma U251 cells to temozolomide and cisplatin by targeting the NF-kappaB/Bcl2 pathway. Mol Med Rep 11(3):1951–1955. CrossRefPubMedGoogle Scholar
  27. 27.
    Gu T, Ohashi R, Cui R, Tajima K, Yoshioka M, Iwakami S, Sasaki S, Shinohara A, Matsukawa T, Kobayashi J, Inaba Y, Takahashi K (2009) Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer. Lung Cancer 66(2):176–183. CrossRefPubMedGoogle Scholar
  28. 28.
    Li Y, Cui N, Zheng PS, Yang WT (2017) BMX/Etk promotes cell proliferation and tumorigenicity of cervical cancer cells through PI3K/AKT/mTOR and STAT3 pathways. Oncotarget 8(30):49238–49252. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liao S, Xiao S, Zhu G, Zheng D, He J, Pei Z, Li G, Zhou Y (2014) CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol Rep 32(6):2703–2709. CrossRefPubMedGoogle Scholar
  30. 30.
    Kumar V, Behera R, Lohite K, Karnik S, Kundu GC (2010) p38 kinase is crucial for osteopontin-induced furin expression that supports cervical cancer progression. Cancer Res 70(24):10381–10391. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiChina
  2. 2.State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
  3. 3.Department of Obstetrics and GynecologyGeneral Hospital of Tianjin Medical UniversityTianjinChina

Personalised recommendations