Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 83, Issue 1, pp 27–42 | Cite as

Population pharmacokinetics of FOLFIRINOX: a review of studies and parameters

  • Laure DeymeEmail author
  • Dominique Barbolosi
  • Florence Gattacceca
Review Article
  • 129 Downloads

Abstract

Purpose

FOLFIRINOX regimen is commonly used in colorectal and more recently pancreatic cancer. However, FOLFIRINOX induces significant and dose-limiting toxic effects leading to empirical dose reduction and sometimes treatment discontinuation. Model-based FOLFIRINOX regimen optimization might help improving patients’ outcome. As a first step, the current review aims at bringing together all published population pharmacokinetics models for FOLFIRINOX anticancer drugs.

Methods

A literature search was conducted in the PubMed database from inception to February 2018, using the following terms: population pharmacokinetic(s), irinotecan, oxaliplatin, fluorouracil, FOLFIRI, FOLFOX, FOLFIRINOX. Only articles displaying nonlinear mixed effect models were included. Study description, pharmacokinetic parameter values and influential covariates are reported. For each model, the typical pharmacokinetic profile was simulated for the standard FOLFIRINOX protocol.

Results

The FOLFIRINOX compounds have been studied only separately so far. A total of six articles were retained for 5-fluorouracil, 6 for oxaliplatin and 5 for irinotecan (also including metabolites). Either one- or two-compartment models have been described for 5-fluorouracil, while two- or three-compartment models were reported for oxaliplatin and irinotecan pharmacokinetics. Non-linear elimination was sometimes reported for 5-fluorouracil. Sex and body size were found as influential covariates for all molecules in some publications. Despite some differences in model structures and parameter values, the simulated profiles and subsequent exposure were consistent between studies.

Conclusions

The current review allows for a global understanding of FOLFIRINOX pharmacokinetics, and will provide a basis for further development of pharmacokinetics–pharmacodynamics–toxicity models for model-driven FOLFIRINOX protocol optimization to reach the best benefit-to-risk ratio.

Keywords

FOLFIRINOX 5-Fluorouracil Irinotecan Oxaliplatin Population pharmacokinetics Nonlinear mixed effect modelling 

Notes

Acknowledgements

The authors would also like to thank the Ligue Contre le Cancer French association who generously provided a grant to Laure Deyme. We are grateful to E. Chatelut (Institut Claudius-Regaud, IUCT-Oncopole, CRCT, Université de Toulouse, Inserm, Toulouse, France) for providing us with the original data and model from the Delord et al. study.

Funding

No funding was sought for this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

280_2018_3722_MOESM1_ESM.pdf (297 kb)
Supplementary material 1 (PDF 296 KB)

References

  1. 1.
    KöhneCH, PetersGJ (2000) UFT: mechanism of drug action. Oncol Williston Park N14:13–18Google Scholar
  2. 2.
    OmuraK (2003) Clinical implications of dihydropyrimidine dehydrogenase (DPD) activity in 5-FU-based chemotherapy: mutations in the DPD gene, and DPD inhibitory fluoropyrimidines. Int J Clin Oncol8:132–138.  https://doi.org/10.1007/s10147-003-0330-z CrossRefGoogle Scholar
  3. 3.
    Boisdron-CelleM, Guérin-MeyerV, CapitainO (2013) 5-fluorouracile: MSI, pharmacocinétique, DPD, TYMS et MTHFR. In: Médecine personnalisée en cancérologie digestive. Springer, Paris, pp 75–92Google Scholar
  4. 4.
    AlcindorT, BeaugerN (2011) Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol18:18–25CrossRefGoogle Scholar
  5. 5.
    GrahamMA, LockwoodGF, GreensladeD et al (2000) Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res6:1205–1218Google Scholar
  6. 6.
    SanghaniSP, QuinneySK, FredenburgTB et al (2004) Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases Ces1a1, Ces2, and a newly expressed carboxylesterase isoenzyme, Ces3. Drug Metab Dispos32:505–511.  https://doi.org/10.1124/dmd.32.5.505 CrossRefGoogle Scholar
  7. 7.
    SantosA, ZanettaS, CresteilT et al (2000) Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res6:2012–2020Google Scholar
  8. 8.
    ChabotGG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet33:245–259.  https://doi.org/10.2165/00003088-199733040-00001 CrossRefGoogle Scholar
  9. 9.
    YchouM, ConroyT, SeitzJF et al (2003) An open phase I study assessing the feasibility of the triple combination: oxaliplatin plus irinotecan plus leucovorin/5-fluorouracil every 2 weeks in patients with advanced solid tumors. Ann Oncol14:481–489.  https://doi.org/10.1093/annonc/mdg119 CrossRefGoogle Scholar
  10. 10.
    FalconeA, RicciS, BrunettiI et al (2007) Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the gruppo oncologico nord ovest. J Clin Oncol25:1670–1676.  https://doi.org/10.1200/JCO.2006.09.0928 CrossRefGoogle Scholar
  11. 11.
    ConroyT, PaillotB, FrançoisE et al (2005) Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer—a Groupe Tumeurs Digestives of the Federation Nationale des Centres de Lutte Contre le Cancer study. J Clin Oncol Off J Am Soc Clin Oncol23:1228–1236.  https://doi.org/10.1200/JCO.2005.06.050 CrossRefGoogle Scholar
  12. 12.
    ConroyT, DesseigneF, YchouM et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med364:1817–1825CrossRefGoogle Scholar
  13. 13.
    ThibodeauS, VoutsadakisIA (2018) FOLFIRINOX chemotherapy in metastatic pancreatic cancer: a systematic review and meta-analysis of retrospective and phase II studies. J Clin Med.  https://doi.org/10.3390/jcm7010007 Google Scholar
  14. 14.
    AllineM, ColomboPE, QuenetF et al (2015) Surgical resectability after neo-adjuvant FOLFIRINOX for borderline or locally advanced pancreatic adenocarcinoma. J Clin Oncol33:421–421.  https://doi.org/10.1200/jco.2015.33.3_suppl.421 CrossRefGoogle Scholar
  15. 15.
    ConroyT, HammelP, HebbarM et al (2018) Unicancer GI PRODIGE 24/CCTG PA.6 trial: A multicenter international randomized phase III trial of adjuvant mFOLFIRINOX versus gemcitabine (gem) in patients with resected pancreatic ductal adenocarcinomas. Meeting ASCO 2018. https://meetinglibrary.asco.org/record/159164/abstract. Accessed 20 Jul 2018
  16. 16.
    Guion-DusserreJ-F, BertautA, GhiringhelliF et al (2016) Folfirinox in elderly patients with pancreatic or colorectal cancer-tolerance and efficacy. World J Gastroenterol22:9378–9386.  https://doi.org/10.3748/wjg.v22.i42.9378 CrossRefGoogle Scholar
  17. 17.
    AssenatE (2012) FOLFIRINOX for the treatment of colorectal cancer: latest evidence from clinical trials. Colorectal Cancer1:181–184.  https://doi.org/10.2217/crc.12.20 CrossRefGoogle Scholar
  18. 18.
    PéronJ, RoyP, ConroyT et al (2016) An assessment of the benefit-risk balance of FOLFIRINOX in metastatic pancreatic adenocarcinoma. Oncotarget7:82953CrossRefGoogle Scholar
  19. 19.
    MarshRDW, TalamontiMS, KatzMH, HermanJM (2015) Pancreatic cancer and FOLFIRINOX: a new era and new questions. Cancer Med4:853–863.  https://doi.org/10.1002/cam4.433 CrossRefGoogle Scholar
  20. 20.
    RomboutsSJ, MungroopTH, HeilmannMN et al (2016) FOLFIRINOX in locally advanced and metastatic pancreatic cancer: a single centre cohort study. J Cancer7(1861):1861–1866.  https://doi.org/10.7150/jca.16279 CrossRefGoogle Scholar
  21. 21.
    KisselJ, PortRE, ZaersJ et al (1999) Noninvasive determination of the arterial input function of an anticancer drug from dynamic PET scans using the population approach. Med Phys26:609–615.  https://doi.org/10.1118/1.598560 CrossRefGoogle Scholar
  22. 22.
    MuellerF, BüchelB, KöberleD et al (2013) Gender-specific elimination of continuous-infusional 5-fluorouracil in patients with gastrointestinal malignancies: results from a prospective population pharmacokinetic study. Cancer Chemother Pharmacol71:361–370.  https://doi.org/10.1007/s00280-012-2018-4 CrossRefGoogle Scholar
  23. 23.
    TerretC, ErdociainE, GuimbaudR et al (2000) Dose and time dependencies of 5-fluorouracil pharmacokinetics. Clin Pharmacol Ther68:270–279.  https://doi.org/10.1067/mcp.2000.109352 CrossRefGoogle Scholar
  24. 24.
    KhoY, JansmanFGA, PrinsNH et al (2006) Population pharmacokinetics of oxaliplatin (85 mg/m2) in combination with 5-fluorouracil in patients with advanced colorectal cancer. Ther Drug Monit28:206–211.  https://doi.org/10.1097/01.ftd.0000191305.64775.04 CrossRefGoogle Scholar
  25. 25.
    DelordJ-P, UmlilA, GuimbaudR et al (2003) Population pharmacokinetics of oxaliplatin. Cancer Chemother Pharmacol51:127–131.  https://doi.org/10.1007/s00280-002-0550-3 Google Scholar
  26. 26.
    BastianG, BarrailA, UrienS (2003) Population pharmacokinetics of oxaliplatin in patients with metastatic cancer. Anticancer Drugs14:817–824.  https://doi.org/10.1097/01.cad.0000099000.92896.5d CrossRefGoogle Scholar
  27. 27.
    PoujolS, PinguetF, YchouM et al (2007) A limited sampling strategy to estimate the pharmacokinetic parameters of irinotecan and its active metabolite, SN-38, in patients with metastatic digestive cancer receiving the FOLFIRI regimen. Oncol Rep18:1613–1621Google Scholar
  28. 28.
    ThompsonPA, GuptaM, RosnerGL et al (2008) Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children’s oncology group. Cancer Chemother Pharmacol62:1027–1037.  https://doi.org/10.1007/s00280-008-0692-z CrossRefGoogle Scholar
  29. 29.
    KimuraT, KashiwaseS, MakimotoA et al (2010) Pharmacokinetic and pharmacodynamic investigation of irinotecan hydrochloride in pediatric patients with recurrent or progressive solid tumors. Int J Clin Pharmacol Ther48:327–334CrossRefGoogle Scholar
  30. 30.
    FouladiM, BlaneySM, PoussaintTY et al (2006) Phase II study of oxaliplatin in children with recurrent or refractory medulloblastoma, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors. Cancer107:2291–2297.  https://doi.org/10.1002/cncr.22241 CrossRefGoogle Scholar
  31. 31.
    BeatyO, BergS, BlaneyS et al (2010) A phase II trial and pharmacokinetic study of oxaliplatin in children with refractory solid tumors: a children’s oncology group study. Pediatr Blood Cancer55:440–445.  https://doi.org/10.1002/pbc.22544 CrossRefGoogle Scholar
  32. 32.
    NikanjamM, StewartCF, TakimotoCH et al (2015) Population pharmacokinetic analysis of oxaliplatin in adults and children identifies important covariates for dosing. Cancer Chemother Pharmacol75:495–503.  https://doi.org/10.1007/s00280-014-2667-6 CrossRefGoogle Scholar
  33. 33.
    BressolleF, JouliaJM, PinguetF et al (1999) Circadian rhythm of 5-fluorouracil population pharmacokinetics in patients with metastatic colorectal cancer. Cancer Chemother Pharmacol44:295–302.  https://doi.org/10.1007/s002800050980 CrossRefGoogle Scholar
  34. 34.
    Porta-OltraB, Pérez-RuixoJJ, Climente-MartíM et al (2004) Population pharmacokinetics of 5-fluorouracil in colorectal cancer patients. J Oncol Pharm Pract10:155–167.  https://doi.org/10.1191/1078155204jp129oa CrossRefGoogle Scholar
  35. 35.
    WolochC, DiPaoloA, MarouaniH et al (2012) Population pharmacokinetic analysis of 5-FU and 5-FDHU in colorectal cancer patients: search for biomarkers associated with gastro-intestinal toxicity. Curr Top Med Chem12:1713–1719CrossRefGoogle Scholar
  36. 36.
    vanKuilenburgABP, HäuslerP, SchalhornA et al (2012) Evaluation of 5-fluorouracil pharmacokinetics in cancer patients with a C.1905 + 1G>A Mutation in DPYD by means of a bayesian limited sampling strategy. Clin Pharmacokinet51:163–174.  https://doi.org/10.1007/BF03257473 Google Scholar
  37. 37.
    BergAK, BucknerJC, GalanisE et al (2015) Quantification of the impact of enzyme-inducing antiepileptic drugs on irinotecan pharmacokinetics and SN-38 exposure. J Clin Pharmacol55:1303–1312.  https://doi.org/10.1002/jcph.543 CrossRefGoogle Scholar
  38. 38.
    KleinCE, GuptaE, ReidJM et al (2002) Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther72:638–647.  https://doi.org/10.1067/mcp.2002.129502 CrossRefGoogle Scholar
  39. 39.
    JoelSP, PapamichaelD, RichardsF et al (2004) Lack of pharmacokinetic interaction between 5-fluorouracil and oxaliplatin. Clin Pharmacol Ther76:45–54.  https://doi.org/10.1016/j.clpt.2004.03.008 CrossRefGoogle Scholar
  40. 40.
    WassermanE, CuvierC, LokiecF et al (1999) Combination of oxaliplatin plus irinotecan in patients with gastrointestinal tumors: results of two independent phase I studies with pharmacokinetics. J Clin Oncol Off J Am Soc Clin Oncol17:1751–1759.  https://doi.org/10.1200/JCO.1999.17.6.1751 CrossRefGoogle Scholar
  41. 41.
    SaltzLB, KanowitzJ, KemenyNE et al (1996) Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol14:2959–2967.  https://doi.org/10.1200/JCO.1996.14.11.2959 CrossRefGoogle Scholar
  42. 42.
    KobuchiS, ItoY, NakanoY, SakaedaT (2015) Population pharmacokinetic modelling and simulation of 5-fluorouracil incorporating a circadian rhythm in rats. Xenobiotica Fate Foreign Compd Biol Syst.  https://doi.org/10.3109/00498254.2015.1100767 Google Scholar
  43. 43.
    MathijssenRHJ, VerweijJ, LoosWJ et al (2002) Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38. Br J Cancer87:144–150.  https://doi.org/10.1038/sj.bjc.6600447 CrossRefGoogle Scholar
  44. 44.
    ValenzuelaB, Nalda-MolinaR, Bretcha-BoixP et al (2011) Pharmacokinetic and pharmacodynamic analysis of hyperthermic intraperitoneal oxaliplatin-induced neutropenia in subjects with peritoneal carcinomatosis. AAPS J13:72–82.  https://doi.org/10.1208/s12248-010-9249-2 CrossRefGoogle Scholar
  45. 45.
    LeeJ-C, KimJW, AhnS et al (2017) Optimal dose reduction of FOLFIRINOX for preserving tumour response in advanced pancreatic cancer: using cumulative relative dose intensity. Eur J Cancer Oxf Engl 199076:125–133.  https://doi.org/10.1016/j.ejca.2017.02.010 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, U1068, Institut National de la santé et de la recherche médicaleMarseilleFrance
  2. 2.Institut Paoli-CalmetteMarseilleFrance
  3. 3.Unité Mixte de Recherche (UMR 7258), Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
  4. 4.Aix Marseille UniversitéMarseilleFrance

Personalised recommendations