Skip to main content

Advertisement

Log in

A phase I trial to determine the safety, pharmacokinetics, and pharmacodynamics of intercalated BMS-690514 with paclitaxel/carboplatin (PC) in advanced or metastatic solid malignancies

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

A phase I dose escalation study was performed to determine the maximum tolerated dose (MTD) of intercalated dosing of BMS-690514, a reversible oral panHER/VEGF receptor inhibitor, combined with paclitaxel/carboplatin (PC) in advanced solid tumors. Secondary endpoints included safety, pharmacokinetics (PK), exploratory pharmacodynamics (PD), and preliminary efficacy.

Experimental design

Patients received fixed doses of P (200 mg/m2) and C (AUC 6 mg/mL min) q21 days with intercalated BMS-690514 (Days 4–19) starting at 100 mg/day and increasing by 50 mg/day using a 3 + 3 dose escalation design until the MTD was reached. Twenty additional patients were enrolled in the expansion cohort at the recommended phase II dose (RP2D).

Results

The MTD was reached at 150 mg/day. DLTs included grade 3 thrombosis at 100 mg (1 patient) and grade 3 diarrhea at 150 mg (1 patient) and 200 mg (2 patients). Serious adverse events (AEs) occurring in 20/37 patients included neutropenia (n = 5), diarrhea (n = 4), pulmonary embolism (n = 3), and simultaneous dehydration, acute renal failure, and febrile neutropenia (n = 2). BMS-690514-related AEs included diarrhea (97 %), acneiform rash (60 %), fatigue (43 %), nausea (30 %), and anorexia (30 %). There were no treatment-related deaths. Sequential intermittent administration of PC did not affect the PK of BMS-690514. Of the 32 patients evaluable for efficacy, there were 12 partial responses including five patients with non-small-cell lung cancer and 12 patients with stable disease.

Conclusions

The MTD of intercalated BMS-609514 combined with PC was 150 mg/day. This approach was tolerable with manageable toxicities and antitumor activity in a variety of solid tumor types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Not for reasons of tolerability or toxicity.

References

  1. Schwartz GN, Pendyala L, Kindler H, Meropol N, Perez R, Raghavan D et al (1998) The clinical development of paclitaxel and the paclitaxel/carboplatin combination. Eur J Cancer 34:1543–1548

    Article  PubMed  CAS  Google Scholar 

  2. Chu Q, Vincent M, Logan D, Mackay JA, Evans WK (2005) Taxanes as first-line therapy for advanced non-small cell lung cancer: a systematic review and practice guideline. Lung Cancer (Amsterdam, Netherlands) 50:355–374

    Article  Google Scholar 

  3. Ozols RF (2002) Update on the management of ovarian cancer. Cancer J (Sudbury, Mass) 8(Suppl 1):S22–S30

    Google Scholar 

  4. Marathe P, Tang Y, Sleczka B, Rodrigues D, Gavai A, Wong T et al (2010) Preclinical pharmacokinetics and in vitro metabolism of BMS-690514, a potent inhibitor of EGFR and VEGFR2. J Pharm Sci 99:3579–3593

    Article  PubMed  CAS  Google Scholar 

  5. Seymour L (2003) Epidermal growth factor receptor inhibitors: an update on their development as cancer therapeutics. Curr Opin Investig Drugs 4:658–666

    PubMed  CAS  Google Scholar 

  6. Chen P, Wang L, Liu B, Zhang HZ, Liu HC, Zou Z (2011) EGFR-targeted therapies combined with chemotherapy for treating advanced non-small-cell lung cancer: a meta-analysis. Eur J Clin Pharmacol 67:235–243

    Article  PubMed  CAS  Google Scholar 

  7. Tsai CM, Chen JT, Stewart DJ, Chiu CH, Lai CL, Hsiao SY et al (2011) Antagonism between gefitinib and cisplatin in non-small cell lung cancer cells: why randomized trials failed? J Thorac Oncol 6:559–568

    Article  PubMed  Google Scholar 

  8. Gatzmeier U, Pluzanska A, Szczesna A, Kaukel E, Roubec J, De Rosa F et al (2007) Phase III trial of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 25:1545–1552

    Article  Google Scholar 

  9. Giaccone G, Herbst RS, Manegold C, Kaukel E, Roubec J, De Rosa F et al (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial - INTACT1. J Clin Oncol 22:777–784

    Article  PubMed  CAS  Google Scholar 

  10. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C et al (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial - INTACT2. J Clin Oncol 22:785–794

    Article  PubMed  CAS  Google Scholar 

  11. Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A et al (2005) TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 23:5892–5899

    Article  PubMed  CAS  Google Scholar 

  12. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  13. Margolin K (2002) Inhibition of vascular endothelial growth factor in the treatment of solid tumors. Curr Oncol Rep 4:20–28

    Article  PubMed  Google Scholar 

  14. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V et al (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–1809

    Article  PubMed  CAS  Google Scholar 

  15. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  16. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  17. Van Cutsem E, Bajetta E, Valle J, Köhne CH, Hecht JR, Moore M et al (2011) Randomized, placebo-controlled, phase III study of oxaliplatin, fluorouracil, and leucovorin with or without PTK787/ZK 222584 in patients with previously treated metastatic colorectal adenocarcinoma. J Clin Oncol 29:2004–2010

    Article  PubMed  Google Scholar 

  18. Lee CB, Socinski MA (2007) Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: a review of recent clinical trials. Rev Recent Clin Trials 2:117–120

    Article  PubMed  CAS  Google Scholar 

  19. Goss GD, Arnold A, Shepherd FA, Dediu M, Ciuleanu TE, Fenton D et al (2010) Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC Clinical Trials Group BR24 study. J Clin Oncol 28:49–55

    Article  PubMed  CAS  Google Scholar 

  20. Blumenschein GR, Kabbinavar F, Menon H, Mok TS, Stephenson J, Beck JT et al (2011) A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer. Ann Oncol 22:2057–2067

    Article  PubMed  Google Scholar 

  21. Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M et al (2010) Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol 28:1835–1842

    Article  PubMed  CAS  Google Scholar 

  22. Davies AM, Ho C, Beckett L, Lau D, Scudder SA, Lara PN et al (2009) Intermittent erlotinib in combination with pemetrexed: phase I schedules designed to achieve pharmacodynamic separation. J Thorac Oncol 4:862–868

    Article  PubMed  Google Scholar 

  23. Sangha R, Davies AM, Lara PN, Mack PC, Beckett LA, Hesketh PJ et al (2001) Intercalated erlotinib-docetaxel dosing schedules designed to achieve pharmacodynamic separation: results of a phase I/II trial. J Thorac Oncol 6:2112–2119

    Article  Google Scholar 

  24. Wong TW, Lee FY, Emanuel S, Fairchild C, Fargnoli J, Fink B et al (2011) Antitumor and antiangiogenic activities of BMS-690514, an inhibitor of human EGF and VEGF receptor kinase families. Clin Cancer Res 17:4031–4041

    Article  PubMed  CAS  Google Scholar 

  25. Gupta A (2010) ErbB/VEGF Receptor Inhibitor: BMS-690514 Investigator Brochure. Bristol-Myers Squibb Research and Development. Princeton, NJ

    Google Scholar 

  26. Chow LQ, Salvati M, Chow P et al (2010) Using FDG-PET in xenograft models to identify dosing regimen in a Phase 1 trial of intercalated BMS-690514 in combination with paclitaxel/carboplatin (PC) in patients with advanced or metastatic solid tumors (poster presentation 168). Multidisciplinary symposium in thoracic oncology (ASCO/ASTRO/IASLC), Chicago, IL

  27. Bahleda R, Felip E, Herbst RS, Hanna NH, Laurie SA, Shepherd FA et al (2008) Phase I multicenter trial of BMS-690514: safety, pharmacokinetic profile, biological effects, and early clinical evaluation in patients with advanced solid tumors and non-small cell lung cancer. J Clin Oncol 26 (suppl; abstr 2564)

  28. Sequist LV, Bell DW, Lynch TJ, Haber DA (2007) Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 25:587–595

    Article  PubMed  CAS  Google Scholar 

  29. Loriot Y, Mordant P, Dorvault N, De la motte Rouge T, Bourhis J, Soria JC et al (2010) BMS-690514, a VEGFR and EGFR tyrosine kinase inhibitor, shows anti-tumoural activity on non-small-cell lung cancer xenografts and induces sequence-dependent synergistic effect with radiation. Br J Cancer 103:347–353

    Article  PubMed  CAS  Google Scholar 

  30. Mok TSK, Lee JS, Zhang L, Yu C, Thongprasert S, Ladrera GEI et al (2012) Biomarker analyses and overall survival (OS) from the randomized, placebo-controlled, phase 3, fastact-2 study of intercalated erlotinib with first-line chemotherapy in advanced non-small-cell lung cancer (NSCLC). Ann Oncol 23(Suppl 9):PPIX400–PPIX446

    Article  Google Scholar 

  31. Pena C, Lathia C, Shan M, Escudier B, Bukowski RM (2010) Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III Treatment Approaches in Renal Cancer Global Evaluation Trial. Clin Cancer Res 16:4853–4863

    Article  PubMed  CAS  Google Scholar 

  32. Mao C, Qiu LX, Liao RY, Du FB, Ding H, Yang WC et al (2010) KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung cancer 69:272–278

    Article  PubMed  Google Scholar 

  33. Langer CJ (2011) Roles of EGFR and KRAS mutations in the treatment of patients with Non-small-cell lung cancer. Pharm Ther 36:263–279

    Google Scholar 

  34. Allen-Auerbach M, Weber WA (2009) Measuring response with FDG-PET: methodological aspects. Oncologist 14:369–377

    Article  PubMed  Google Scholar 

  35. Weber WA, Figlin R (2007) Monitoring cancer treatment with PET/CT: does it make a difference? J Nucl Med 48(Suppl 1):36S–44S

    PubMed  CAS  Google Scholar 

  36. Prior JO, Montemurro M, Orcurto MV, Michielin O, Luthi F, Benhattar J et al (2009) Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol 27:439–445

    Article  PubMed  CAS  Google Scholar 

  37. Revheim ME, Roe K, Bruland OS, Bach-Gansmo T, Skretting A, Seierstad T (2011) Monitoring the Effect of Targeted Therapies in a Gastrointestinal Stromal Tumor Xenograft Using a Clinical PET/CT. Mol Imaging Biol 13:1234–1240

    Article  PubMed  Google Scholar 

  38. Funck-Brentano C, Jaillon P (1993) Rate-corrected QT interval: techniques and limitations. Am J Cardiol 72(6):17B–22B

    Article  PubMed  CAS  Google Scholar 

  39. Christopher LJ, Hong H, Vakkalagadda B, Clemens PL, Su H, Roongta V et al (2010) Metabolism and disposition of [14C]BMS-690514 ((3R,4R)-4-amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2,1-f][1, 2, 4]triazin-5-yl)methyl)-3-piperidinol), an ErbB/VEGFR inhibitor, after oral administration to humans. Drug Metab Dispos 38:2049–2059

    Article  PubMed  CAS  Google Scholar 

  40. Hong HZ, Su H, Ma L, Yao M, Iyer RA, Humphreys WG et al (2011) In vitro characterization of the metabolic pathways and P450 inhibition and induction potential of BMS-690514, an ErbB/VEGFR inhibitor. Drug Metab Dispos 39:1658–1667

    Article  PubMed  CAS  Google Scholar 

  41. Tonkin K, Tritchler D, Tannock I (1985) Criteria of tumor response used in clinical trials of chemotherapy. J Clin Oncol 3:870–875

    PubMed  CAS  Google Scholar 

  42. Glusker P, Recht L, Lane B (2006) Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 354:980–982 (discussion-2)

    Article  PubMed  CAS  Google Scholar 

  43. Kaneda H, Okamoto I, Satoh T, Nakagawa K (2011) Reversible posterior leukoencephalopathy syndrome and trastuzumab. Invest New Drugs [Epub ahead of print]

  44. Martin G, Bellido L, Cruz JJ (2007) Reversible posterior leukoencephalopathy syndrome induced by sunitinib. J Clin Oncol 25:3559

    Article  PubMed  Google Scholar 

  45. de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T et al (2007) A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 67:6253–6262

    Article  PubMed  CAS  Google Scholar 

  46. Bahleda R, Soria J, Harbison C, Park J, Felip E, Hanna N et al (2009) Tumor regression and pharmacodynamic (PD) biomarker validation in non-small cell lung cancer (NSCLC) patients treated with the Erb/VEGFR inhibitor BMS-690514 [ASCO abstract 8098]. J Clin Oncol 27((15S)):11–12

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank all of the participating patients and their families, as well as the global network of investigators, research nurses, study coordinators, and operation staff. This study was sponsored by Bristol-Myers Squibb (BMS) Inc.

Conflict of interest

L.Q.M. Chow, D.I. Jonker, G.K. Dy, G. Nicholas, C. Fortin, A.A. Adjei, C.P. Belani, and S.A. Laurie have no conflicts of interest to declare. D. Patricia, A. Gupta, J.-S. Park, S. Zhang, and E.I. Sbar are employees of the Bristol-Myers Squibb (BMS) Company and hold stock in BMS, the manufacturer of BMS-690514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Q. M. Chow.

Additional information

ClinicalTrials.gov Identifier: NCT00420186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, L.Q.M., Jonker, D.I., Dy, G.K. et al. A phase I trial to determine the safety, pharmacokinetics, and pharmacodynamics of intercalated BMS-690514 with paclitaxel/carboplatin (PC) in advanced or metastatic solid malignancies. Cancer Chemother Pharmacol 71, 1273–1285 (2013). https://doi.org/10.1007/s00280-013-2126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2126-9

Keywords

Navigation