MicroRNAs: pivotal regulators in acute myeloid leukemia

  • Mingyu Li
  • Xianglun Cui
  • Hongzai GuanEmail author
Review Article


MicroRNAs are a class of small non-coding RNAs that are 19–22 nucleotides in length and regulate a variety of biological processes at the post-transcriptional level. MicroRNA dysregulation disrupts normal biological processes, resulting in tumorigenesis. Acute myeloid leukemia is an invasive hematological malignancy characterized by the abnormal proliferation and differentiation of immature myeloid cells. Due to the low 5-year survival rate, there is an urgent need to discover novel diagnostic markers and therapeutic targets. In recent years, microRNAs have been shown to play important roles in hematological malignancies by acting as tumor suppressors and oncogenes. MicroRNAs have the potential to be a breakthrough in the diagnosis and treatment of acute myeloid leukemia. In this review, we summarize the biology of microRNAs and discuss the relationships between microRNA dysregulation and acute myeloid leukemia in the following aspects: signaling pathways, the abnormal biological behavior of acute myeloid leukemia cells, the clinical application of microRNAs and competing endogenous RNA regulatory networks.


MicroRNAs Acute myeloid leukemia Leukemogenesis Biomarkers Therapeutic targets ceRNA 



Acute lymphocytic leukemia


Acute myeloid leukemia


Acute promyelocytic leukemia


Area under curve


B cell acute lymphocytic leukemia


Bone marrow


Cytogenetically abnormal acute leukemia


Competing endogenous RNA


Circular RNAs


Chronic lymphoid leukemia


Cytogenetically normal acute myeloid leukemia


Complete remission


Disease-free survival


Event-free survival


The homeobox transcription factor


The hematopoietic stem and progenitor cell


Leukemia-free survival


Long non-coding RNAs


Leukemia stem cells




Mitogen-activated protein kinase


Mixed lineage leukemia


Overall survival


Primary miRNA transcripts


Peripheral blood mononuclear cells


Recurrence rate


T cell acute lymphoblastic leukemia.


Authors’ contributions

HZG provided direction and guidance throughout the preparation of this manuscript. MYL drafted the manuscript. HZG and XLC reviewed and made significant revisions to the manuscript. All authors have read and approved the final manuscript.

Funding information

This work was supported by the Natural Science Foundation of Shandong Province (ZR2017MH042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.


  1. 1.
    Estey EH (2018) Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol 93(10):1267–1291PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Papayannidis C, Sartor C, Marconi G, Fontana MC, Nanni J, Cristiano G, Parisi S, Paolini S, Curti A (2019) Acute myeloid leukemia mutations: therapeutic implications. Int J Mol Sci 20:11CrossRefGoogle Scholar
  3. 3.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE (2016) Pairing beyond the seed supports microRNA targeting specificity. Mol Cell 64(2):320–333PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wallace JA, O'Connell RM (2017) MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 130(11):1290–1301PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Weiss CN, Ito K (2017) A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol 334:99–175PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Landskroner-Eiger S, Moneke I, Sessa WC (2013) miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med 3(2):a006643PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Trobaugh DW, Klimstra WB (2017) MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med 23(1):80–93PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kim J, Yao F, Xiao Z, Sun Y, Ma L (2018) MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev 37(1):5–15PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Drobna M, Szarzynska-Zawadzka B, Dawidowska M (2018) T-cell acute lymphoblastic leukemia from miRNA perspective: basic concepts, experimental approaches, and potential biomarkers. Blood RevGoogle Scholar
  11. 11.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22(22):3172–3183PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL (2010) Structure and activity of putative intronic miRNA promoters. RNA (New York, NY) 16(3):495–505CrossRefGoogle Scholar
  15. 15.
    Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130(2):287–297PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schotte D, Pieters R, Den Boer ML (2012) MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 26(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4(11):e1000224PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ (2009) Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 5(9):e1000507PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Titov II, Vorozheykin PS (2018) Comparing miRNA structure of mirtrons and non-mirtrons. BMC Genomics 19(Suppl 3):114PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20(1):5–20PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Abdelfattah AM, Park C, Choi MY (2014) Update on non-canonical microRNAs. Biomolecular Concepts 5(4):275–287PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chipman LB, Pasquinelli AE (2019) miRNA targeting: growing beyond the seed. Trends in Genetics: TIG 35(3):215–222PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3):e85PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sun HL, Cui R, Zhou J, Teng KY, Hsiao YH, Nakanishi K, Fassan M, Luo Z, Shi G, Tili E, Kutay H, Lovat F, Vicentini C, Huang HL, Wang SW, Kim T, Zanesi N, Jeon YJ, Lee TJ, Guh JH, Hung MC, Ghoshal K, Teng CM, Peng Y, Croce CM (2016) ERK activation globally downregulates miRNAs through phosphorylating exportin-5. Cancer Cell 30(5):723–736PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G (2006) Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 13(5):748–758PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1(5):a000141PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rushworth SA, Murray MY, Barrera LN, Heasman SA, Zaitseva L, Macewan DJ (2012) Understanding the role of miRNA in regulating NF-κB in blood cancer. Am J Cancer Res 2(1):65–74PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM, Baltimore D (2011) NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 108(22):9184–9189PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A (2010) Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med 16(1):49–58PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Fang J, Barker B, Bolanos L, Liu X, Jerez A, Makishima H, Christie S, Chen X, Rao DS, Grimes HL, Komurov K, Weirauch MT, Cancelas JA, Maciejewski JP, Starczynowski DT (2014) Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-kappaB gene network. Cell Rep 8(5):1328–1338PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li X, Xu L, Shen X, Cai J, Liu J, Yin T, Xiao F, Chen F, Zhong H (2018) Up-regulated miR-146a expression induced by G-CSF enhanced low dosage chemotherapy response in aged acute myeloid leukemia patients. Exp HematolGoogle Scholar
  41. 41.
    Wang Y, Tang P, Chen Y, Chen J, Ma R, Sun L (2017) Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-kappaB signaling pathway. Biochem Biophys Res Commun 488(1):60–66PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183PubMedPubMedCentralGoogle Scholar
  44. 44.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews: MMBR 75(1):50–83PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zaidi SK, Dowdy CR, van Wijnen AJ, Lian JB, Raza A, Stein JL, Croce CM, Stein GS (2009) Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res 69(21):8249–8255PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hartmann JU, Brauer-Hartmann D, Kardosova M, Wurm AA, Wilke F, Schodel C, Gerloff D, Katzerke C, Krakowsky R, Namasu CY et al (2018) MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis 9(8):814PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bhayadia R, Krowiorz K, Haetscher N, Jammal R, Emmrich S, Obulkasim A, Fiedler J, Schwarzer A, Rouhi A, Heuser M, Wingert S, Bothur S, Döhner K, Mätzig T, Ng M, Reinhardt D, Döhner H, Zwaan CM, van den Heuvel Eibrink M, Heckl D, Fornerod M, Thum T, Humphries RK, Rieger MA, Kuchenbauer F, Klusmann JH (2018) Endogenous tumor suppressor microRNA-193b: therapeutic and prognostic value in acute myeloid leukemia. J Clin Oncol 36(10):1007–1016PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102(3):972–980PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kubota Y, Ohnishi H, Kitanaka A, Ishida T, Tanaka T (2004) Constitutive activation of PI3K is involved in the spontaneous proliferation of primary acute myeloid leukemia cells: direct evidence of PI3K activation. Leukemia 18(8):1438–1440PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, Saki N (2015) Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci 72(12):2337–2347PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Xue H, Hua LM, Guo M, Luo JM (2014) SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 32(5):2253–2259PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lechman ER, Gentner B, Ng SW, Schoof EM, van Galen P, Kennedy JA, Nucera S, Ciceri F, Kaufmann KB, Takayama N et al (2016) miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell 29(2):214–228PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Deng L, Jiang L, Lin XH, Tseng KF, Liu Y, Zhang X, Dong RH, Lu ZG, Wang XJ (2017) The PI3K/mTOR dual inhibitor BEZ235 suppresses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia. Acta Pharmacol Sin 38(3):382–391PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Emmrich S, Engeland F, El-Khatib M, Henke K, Obulkasim A, Schöning J, Katsman-Kuipers JE, Michel Zwaan C, Pich A, Stary J et al (2016) miR-139-5p controls translation in myeloid leukemia through EIF4G2. Oncogene 35(14):1822–1831PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Alemdehy MF, Haanstra JR, de Looper HW, van Strien PM, Verhagen-Oldenampsen J, Caljouw Y, Sanders MA, Hoogenboezem R, de Ru AH, Janssen GM et al (2015) ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation. Blood 125(25):3937–3948PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Zhang R, Tang P, Wang F, Xing Y, Jiang Z, Chen S, Meng X, Liu L, Cao W, Zhao H et al (2018) Tumor suppressor miR-139-5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway. J Cell BiochemGoogle Scholar
  60. 60.
    Favreau AJ, Sathyanarayana P (2012) miR-590-5p, miR-219-5p, miR-15b and miR-628-5p are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk Res 36(3):334–341PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chen L, Jiang X, Chen H, Han Q, Liu C, Sun M (2019) microRNA-628 inhibits the proliferation of acute myeloid leukemia cells by directly targeting IGF-1R. OncoTargets and Therapy 12:907–919PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhou JD, Li XX, Zhang TJ, Xu ZJ, Zhang ZH, Gu Y, Wen XM, Zhang W, Ji RB, Deng ZQ et al (2019) Dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia. Aging 11(10):3376–3391PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lento W, Congdon K, Voermans C, Kritzik M, Reya T (2013) Wnt signaling in normal and malignant hematopoiesis. Cold Spring Harb Perspect Biol 5(2)PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science (New York, NY) 327(5973):1650–1653CrossRefGoogle Scholar
  65. 65.
    Simon M, Grandage VL, Linch DC, Khwaja A (2005) Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 24(14):2410–2420PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A, Xie Y, Li Z, Schambach A, Reinhardt D et al (2014) miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev 28(8):858–874PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Li G, Song Y, Zhang Y, Wang H, Xie J (2016) miR-34b targets HSF1 to suppress cell survival in acute myeloid leukemia. Oncol Res 24(2):109–116PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Garzon R, Heaphy CEA, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114(26):5331–5341PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Liu B, Ma H, Liu Q, Xiao Y, Pan S, Zhou H, Jia L (2019) MiR-29b/Sp1/FUT4 axis modulates the malignancy of leukemia stem cells by regulating fucosylation via Wnt/β-catenin pathway in acute myeloid leukemia. J Exp Clin Cancer Res 38(1):200PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gerloff D, Grundler R, Wurm AA, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Madan V, Müller-Tidow C, Duyster J, Tenen DG, Niederwieser D, Behre G (2015) NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 29(3):535–547PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Huang H, Jiang X, Wang J, Li Y, Song CX, Chen P, Li S, Gurbuxani S, Arnovitz S, Wang Y et al (2016) Identification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia. Cancer Lett 372(2):157–165PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jiang X, Hu C, Arnovitz S, Bugno J, Yu M, Zuo Z, Chen P, Huang H, Ulrich B, Gurbuxani S et al (2016) miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 7:11452PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bi L, Zhou B, Li H, He L, Wang C, Wang Z, Zhu L, Chen M, Gao S (2018) A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute myeloid leukemia. BMC Cancer 18(1):182PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Strobel P, Wachter A et al (2017) Hoxa9 and Meis1 cooperatively induce addiction to Syk signaling by suppressing miR-146a in acute myeloid leukemia. Cancer Cell 31(4):549–562.e511PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zheng Z, Zheng X, Zhu Y, Gu X, Gu W, Xie X, Hu W, Jiang J (2019) miR-183-5p inhibits occurrence and progression of acute myeloid leukemia via targeting Erbin. Molecular Therapy: the Journal of the American Society of Gene Therapy 27(3):542–558CrossRefGoogle Scholar
  76. 76.
    Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD (2011) The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117(4):1121–1129PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fleischmann KK, Pagel P, von Frowein J, Magg T, Roscher AA, Schmid I (2016) The leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via miR-511 repression. J Exp Clin Cancer Res 35:9PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S, Radmacher MD, Maharry K, Elkahloun A, Yang X, He C, He M, Zhang Z, Dohner K, Neilly MB, Price C, Lussier YA, Zhang Y, Larson RA, le Beau MM, Caligiuri MA, Bullinger L, Valk PJ, Delwel R, Lowenberg B, Liu PP, Marcucci G, Bloomfield CD, Rowley JD, Chen J (2012) Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 119(10):2314–2324PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Senyuk V, Zhang Y, Liu Y, Ming M, Premanand K, Zhou L, Chen P, Chen J, Rowley JD, Nucifora G, Qian Z (2013) Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci U S A 110(14):5594–5599PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen P, Price C, Li Z, Li Y, Cao D, Wiley A, He C, Gurbuxani S, Kunjamma RB, Huang H et al (2013) miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci U S A 110(28):11511–11516PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Emmrich S, Katsman-Kuipers JE, Henke K, Khatib ME, Jammal R, Engeland F, Dasci F, Zwaan CM, den Boer ML, Verboon L et al (2014) miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia 28(5):1022–1032PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Yeh CH, Moles R, Nicot C (2016) Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer 15(1):37PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zhang H, Luo X-Q, Feng D-D, Zhang X-J, Wu J, Zheng Y-S, Chen X, Xu L, Chen Y-Q (2011) Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia. Mol Cancer 10:108–108PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pelosi A, Careccia S, Lulli V, Romania P, Marziali G, Testa U, Lavorgna S, Lo-Coco F, Petti MC, Calabretta B et al (2013) miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene 32(31):3648–3654PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V, Ma DD (2014) MicroRNA-155 as an inducer of apoptosis and cell differentiation in acute myeloid leukaemia. Mol Cancer 13:79PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    De Luca L, Trino S, Laurenzana I, Tagliaferri D, Falco G, Grieco V, Bianchino G, Nozza F, Campia V, D’Alessio F et al (2017) Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia. Cell Death Dis 8(6):e2849PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hatzl S, Geiger O, Kuepper MK, Caraffini V, Seime T, Furlan T, Nussbaumer E, Wieser R, Pichler M, Scheideler M, Nowek K, Jongen-Lavrencic M, Quehenberger F, Wölfler A, Troppmair J, Sill H, Zebisch A (2016) Increased expression of miR-23a mediates a loss of expression in the RAF kinase inhibitor protein RKIP. Cancer Res 76(12):3644–3654PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zhang Y, Zhou SY, Yan HZ, Xu DD, Chen HX, Wang XY, Wang X, Liu YT, Zhang L, Wang S et al (2016) miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and Bmi-1. Sci Rep 6:19995PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang H, He H, Yang C (2019) miR-342 suppresses the proliferation and invasion of acute myeloid leukemia by targeting Naa10p. Artificial Cells, Nanomedicine, and Biotechnology 47(1):3671–3676PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shaham L, Binder V, Gefen N, Borkhardt A, Izraeli S (2012) MiR-125 in normal and malignant hematopoiesis. Leukemia 26(9):2011–2018PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M et al (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 107(32):14229–14234PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A 107(50):21505–21510PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fayyad-Kazan H, Bitar N, Najar M, Lewalle P, Fayyad-Kazan M, Badran R, Hamade E, Daher A, Hussein N, ElDirani R et al (2013) Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med 11:31–31PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Trino S, Lamorte D, Caivano A, Laurenzana I, Tagliaferri D, Falco G, Del Vecchio L, Musto P, De Luca L (2018) MicroRNAs as new biomarkers for diagnosis and prognosis, and as potential therapeutic targets in acute myeloid leukemia. Int J Mol Sci:19(2)PubMedCentralCrossRefGoogle Scholar
  97. 97.
    Huang Y, Zou Y, Lin L, Ma X, Chen H (2018) Identification of serum miR-34a as a potential biomarker in acute myeloid leukemia. Cancer Biomarkers: Section A of Disease Markers 22(4):799–805PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hornick NI, Doron B, Abdelhamed S, Huan J, Harrington CA, Shen R, Cambronne XA, Chakkaramakkil Verghese S, Kurre P (2016) AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Science Signaling 9(444):ra88PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Caivano A, La Rocca F, Simeon V, Girasole M, Dinarelli S, Laurenzana I, De Stradis A, De Luca L, Trino S, Traficante A et al (2017) MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies—a short report. Cellular Oncology (Dordrecht) 40(1):97–103CrossRefGoogle Scholar
  100. 100.
    Yamamoto H, Lu J, Oba S, Kawamata T, Yoshimi A, Kurosaki N, Yokoyama K, Matsushita H, Kurokawa M, Tojo A et al (2016) miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target. Sci Rep 6:19204PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Dorrance AM, Neviani P, Ferenchak GJ, Huang X, Nicolet D, Maharry KS, Ozer HG, Hoellarbauer P, Khalife J, Hill EB et al (2015) Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia 29(11):2143–2153PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gao XN, Lin J, Li YH, Gao L, Wang XR, Wang W, Kang HY, Yan GT, Wang LL, Yu L (2011) MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 30(31):3416–3428PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH et al (2010) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 28(36):5257–5264CrossRefGoogle Scholar
  104. 104.
    Diaz-Beya M, Brunet S, Nomdedeu J, Cordeiro A, Tormo M, Escoda L, Ribera JM, Arnan M, Heras I, Gallardo D et al (2015) The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia. Blood Cancer Journal 5:e352PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Butrym A, Rybka J, Baczyńska D, Tukiendorf A, Kuliczkowski K, Mazur G (2015) Low expression of microRNA-204 (miR-204) is associated with poor clinical outcome of acute myeloid leukemia (AML) patients. J Exp Clin Cancer Res 34:68PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zhang TJ, Wu DH, Zhou JD, Li XX, Zhang W, Guo H, Ma JC, Deng ZQ, Lin J, Qian J (2018) Overexpression of miR-216b: prognostic and predictive value in acute myeloid leukemia. J Cell Physiol 233(4):3274–3281PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Fu L, Qi J, Gao X, Zhang N, Zhang H, Wang R, Xu L, Yao Y, Niu M, Xu K (2019) High expression of miR-338 is associated with poor prognosis in acute myeloid leukemia undergoing chemotherapy. J Cell Physiol 234(11):20704–20712PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Madhavan D, Cuk K, Burwinkel B, Yang R (2013) Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet 4:116PubMedPubMedCentralGoogle Scholar
  109. 109.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sheridan C (2016) Exosome cancer diagnostic reaches market. Nat Biotechnol 34(4):359–360PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Boyiadzis M, Whiteside TL (2017) The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia 31(6):1259–1268PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Takahashi RU, Prieto-Vila M, Hironaka A, Ochiya T (2017) The role of extracellular vesicle microRNAs in cancer biology. Clin Chem Lab Med 55(5):648–656PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Hong CS, Muller L, Whiteside TL, Boyiadzis M (2014) Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol 5:160PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Boyiadzis M, Whiteside TL (2016) Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: are we ready? Expert Rev Mol Diagn 16(6):623–629PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Whiteside TL (2015) The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev Mol Diagn 15(10):1293–1310PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Tomasetti M, Lee W, Santarelli L, Neuzil J (2017) Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med 49(1):e285PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH, Kurre P (2015) Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep 5:11295PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Pikman Y, Stegmaier K (2018) Targeted therapy for fusion-driven high-risk acute leukemia. Blood 132(12):1241–1247PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gabra MM, Salmena L (2017) microRNAs and acute myeloid leukemia chemoresistance: a mechanistic overview. Front Oncol 7:255PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Bhagavathi S, Czader M (2010) MicroRNAs in benign and malignant hematopoiesis. Arch Pathol Lab Med 134(9):1276–1281PubMedPubMedCentralGoogle Scholar
  122. 122.
    Yang N, Zhu S, Lv X, Qiao Y, Liu YJ, Chen J (2018) MicroRNAs: pleiotropic regulators in the tumor microenvironment. Front Immunol 9:2491PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomao K, Alejandra Pezuk J, Sol Brassesco M (2018) MiRNA dysregulation in childhood hematological cancer. Int J Mol Sci 19(9)PubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Garzon R, Volinia S, Papaioannou D, Nicolet D, Kohlschmidt J, Yan PS, Mrozek K, Bucci D, Carroll AJ, Baer MR et al (2014) Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A 111(52):18679–18684PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chen L, Wang W, Cao L, Li Z, Wang X (2016) Long non-coding RNA CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia. Molecules and Cells 39(4):330–336PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Zhao C, Wang S, Zhao Y, Du F, Wang W, Lv P, Qi L (2018) Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR-23a-3p/SMC1A in acute myeloid leukemia. J Cell PhysiolGoogle Scholar
  131. 131.
    Tian YJ, Wang YH, Xiao AJ, Li PL, Guo J, Wang TJ, Zhao DJ (2019) Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia. Artificial Cells, Nanomedicine, and Biotechnology 47(1):1730–1737PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y et al (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17(1):79–79PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Cui X, Wang J, Guo Z, Li M, Li M, Liu S, Liu H, Li W, Yin X, Tao J, Xu W (2018) Emerging function and potential diagnostic value of circular RNAs in cancer. Mol Cancer 17(1):123–123PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X, Fu L (2019) Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 12(1):51PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, Zhang R, Chen Z, Wang K (2018) Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis 9(6):651PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ et al: Role of circular RNA DLEU2 in human acute myeloid leukemia. Mol Cell Biol 2018, 38(20)Google Scholar
  137. 137.
    Haas G, Cetin S, Messmer M, Chane-Woon-Ming B, Terenzi O, Chicher J, Kuhn L, Hammann P, Pfeffer S (2016) Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res 44(6):2873–2887PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Shivarov V, Bullinger L (2014) Expression profiling of leukemia patients: key lessons and future directions. Exp Hematol 42(8):651–660PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    McDermott AM, Heneghan HM, Miller N, Kerin MJ (2011) The therapeutic potential of microRNAs: disease modulators and drug targets. Pharm Res 28(12):3016–3029PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Clinical HematologyMedical College of Qingdao UniversityQingdaoChina
  2. 2.Department of InspectionMedical College of Qingdao UniversityQingdaoChina

Personalised recommendations