Visual and volumetric parameters by 18F-FDG-PET/CT: a head to head comparison for the prediction of outcome in patients with multiple myeloma

  • Rosa FontiEmail author
  • Sara Pellegrino
  • Lucio Catalano
  • Fabrizio Pane
  • Silvana Del Vecchio
  • Leonardo Pace
Original Article


In multiple myeloma (MM) patients, 18F-FDG-PET/CT allows either the detection of disease spread by using visual parameters based on the Italian Myeloma criteria for PET Use (IMPeTUs) or the direct measurement of metabolic tumor burden by volume-based parameters such as metabolic tumor volume (MTV). The purpose is to evaluate the contribution of visual and volumetric parameters in the prediction of progression-free survival (PFS) and overall survival (OS) in MM patients. Forty-seven patients in stage IIIA who had undergone whole-body 18F-FDG-PET/CT were retrospectively evaluated. In each patient, visual parameters were determined and compared with volumetric parameters for PFS and OS prediction after a mean follow-up period of 53 months. Among the visual and volumetric parameters tested, a statistically significant difference was found between maximum standardized uptake value, MTV, total lesion glycolysis, and number of lytic lesions of patients with (n = 26) or without (n = 21) progression (p = 0.0400, p = 0.0065, p = 0.015, and p = 0.0220, respectively) and of dead (n = 24) vs survivors (n = 23) (p = 0.0171, p = 0.0037, p = 0.0060, and p = 0.0270, respectively). At univariate and multivariate analysis, MTV and hemoglobin were predictive of both PFS (p = 0.008) and OS (p = 0.0026). The best MTV discriminative value assessed by receiver operating characteristic curve analysis for predicting both PFS and OS was 39.4 ml. By Kaplan-Meier analysis and log-rank test, PFS and OS were significantly better in patients with MTV ≤ 39.4 ml (p = 0.0004 and p = 0.0001, respectively) as compared with those having an MTV higher than the cutoff. The volume-based parameter MTV determined by 18F-FDG-PET/CT may be used in the prediction of PFS and OS in myeloma patients.


Multiple myeloma 18F-FDG-PET/CT MTV Visual PET parameters Prognosis 


Funding information

This work was financially partly supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, project no. IG-17249) and Programma Operativo Regionale POR Campania, Fondo Europeo Sviluppo Regionale 2014/2020.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Institutional Ethics Committee - protocol no. 352/18) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Chantry A, Kazmi M, Barrington S, Goh V, Mulholland N, Streetly M, Lai M, Pratt G, British Society for Haematology G (2017) Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol 178:380–393CrossRefGoogle Scholar
  2. 2.
    Rajkumar SV (2018) Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol 93:981–1114CrossRefGoogle Scholar
  3. 3.
    Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36:842–854CrossRefGoogle Scholar
  4. 4.
    Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, Boccadoro M, Child JA, Avet-Loiseau H, Kyle RA, Lahuerta JJ, Ludwig H, Morgan G, Powles R, Shimizu K, Shustik C, Sonneveld P, Tosi P, Turesson I, Westin J (2005) International staging system for multiple myeloma. J Clin Oncol 23:3412–3420CrossRefGoogle Scholar
  5. 5.
    Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, Richardson P, Caltagirone S, Lahuerta JJ, Facon T, Bringhen S, Gay F, Attal M, Passera R, Spencer A, Offidani M, Kumar S, Musto P, Lonial S, Petrucci MT, Orlowski RZ, Zamagni E, Morgan G, Dimopoulos MA, Durie BG, Anderson KC, Sonneveld P, San Miguel J, Cavo M, Rajkumar SV, Moreau P (2015) Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol 33:2863–2869CrossRefGoogle Scholar
  6. 6.
    Jung SH, Kwon SY, Min JJ, Bom HS, Ahn SY, Jung SY, Lee SS, Park MR, Yang DH, Ahn JS, Kim HJ, Lee JJ (2019) (18)F-FDG PET/CT is useful for determining survival outcomes of patients with multiple myeloma classified as stage II and III with the Revised International Staging System. Eur J Nucl Med Mol Imaging 46:107–115CrossRefGoogle Scholar
  7. 7.
    Hillengass J, Usmani S, Rajkumar SV, Durie BGM, Mateos MV, Lonial S, Joao C, Anderson KC, Garcia-Sanz R, Riva E, Du J, van de Donk N, Berdeja JG, Terpos E, Zamagni E, Kyle RA, San Miguel J, Goldschmidt H, Giralt S, Kumar S, Raje N, Ludwig H, Ocio E, Schots R, Einsele H, Schjesvold F, Chen WM, Abildgaard N, Lipe BC, Dytfeld D, Wirk BM, Drake M, Cavo M, Lahuerta JJ, Lentzsch S (2019) International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol 20:e302–e312CrossRefGoogle Scholar
  8. 8.
    Ripani D, Caldarella C, Za T, Pizzuto DA, Rossi E, De Stefano V, Giordano A (2019) Prognostic significance of normalized FDG-PET parameters in patients with multiple myeloma undergoing induction chemotherapy and autologous hematopoietic stem cell transplantation: a retrospective single-center evaluation. Eur J Nucl Med Mol Imaging 46:116–128CrossRefGoogle Scholar
  9. 9.
    Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23:3–9CrossRefGoogle Scholar
  10. 10.
    Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E, Alpe T, Angtuaco E, Walker R, Epstein J, Crowley J, Barlogie B (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114:2068–2076CrossRefGoogle Scholar
  11. 11.
    Mesguich C, Fardanesh R, Tanenbaum L, Chari A, Jagannath S, Kostakoglu L (2014) State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings. Eur J Radiol 83:2203–2223CrossRefGoogle Scholar
  12. 12.
    Li Y, Liu J, Huang B, Chen M, Diao X, Li J (2017) Application of PET/CT in treatment response evaluation and recurrence prediction in patients with newly-diagnosed multiple myeloma. Oncotarget 8:25637–25649PubMedGoogle Scholar
  13. 13.
    Nanni C, Zamagni E, Versari A, Chauvie S, Bianchi A, Rensi M, Bello M, Rambaldi I, Gallamini A, Patriarca F, Gay F, Gamberi B, Cavo M, Fanti S (2016) Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTUs (Italian Myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging 43:414–421CrossRefGoogle Scholar
  14. 14.
    Nanni C, Versari A, Chauvie S, Bertone E, Bianchi A, Rensi M, Bello M, Gallamini A, Patriarca F, Gay F, Gamberi B, Ghedini P, Cavo M, Fanti S, Zamagni E (2018) Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): final results. IMPeTUs (Italian myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging 45:712–719CrossRefGoogle Scholar
  15. 15.
    Barrington SF, Kluge R (2017) FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging 44:97–110CrossRefGoogle Scholar
  16. 16.
    Zamagni E, Nanni C, Dozza L, Carlier T, Tacchetti P, Versari A, Chauvie S, Gallamini A, Attal M, Gamberi B, Caillot D, Patriarca F, Macro M, Boccadoro M, Garderet L, Fanti S, Perrot A, Gay F, Sonneveld P, Karlin L, Cavo M, Bodet-Milin C, Moreau P, Kraeber-Bodere F. Standardization of 18F-FDG PET/CT according to Deauville criteria for MRD evaluation in newly diagnosed transplant eligible multiple myeloma patients: joined analysis of two prospective randomized phase III trials. Blood 2018Google Scholar
  17. 17.
    Haznedar R, Aki SZ, Akdemir OU, Ozkurt ZN, Ceneli O, Yagci M, Sucak GT, Unlu M (2011) Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging 38:1046–1053CrossRefGoogle Scholar
  18. 18.
    Zamagni E, Cavo M (2012) The role of imaging techniques in the management of multiple myeloma. Br J Haematol 159:499–513PubMedGoogle Scholar
  19. 19.
    Fonti R, Pace L, Cerchione C, Catalano L, Salvatore B, De Luca S, Pane F, Salvatore M, Del Vecchio S (2015) 18F-FDG PET/CT, 99mTc-MIBI, and MRI in the prediction of outcome of patients with multiple myeloma: a comparative study. Clin Nucl Med 40:303–308CrossRefGoogle Scholar
  20. 20.
    Tu H, He Y, Huang T, Choe S, Lan X, Duan X, Sattar H, Li C, Zhou F (2018) Predictive value of (18) F-FDG PET/CT scanning in combination with clinical parameters in patients with newly diagnosed multiple myeloma. Eur J Haematol 100:189–197CrossRefGoogle Scholar
  21. 21.
    Fonti R, Larobina M, Del Vecchio S, De Luca S, Fabbricini R, Catalano L, Pane F, Salvatore M, Pace L (2012) Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med 53:1829–1835CrossRefGoogle Scholar
  22. 22.
    McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, Waheed S, van Rhee F, Zangari M, Heuck CJ, Petty N, Schinke C, Thanendrarajan S, Mitchell A, Hoering A, Barlogie B, Morgan GJ, Davies FE (2017) Assessment of Total lesion glycolysis by (18)F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res 23:1981–1987CrossRefGoogle Scholar
  23. 23.
    Durie BG, Kyle RA, Belch A, Bensinger W, Blade J, Boccadoro M, Child JA, Comenzo R, Djulbegovic B, Fantl D, Gahrton G, Harousseau JL, Hungria V, Joshua D, Ludwig H, Mehta J, Morales AR, Morgan G, Nouel A, Oken M, Powles R, Roodman D, San Miguel J, Shimizu K, Singhal S, Sirohi B, Sonneveld P, Tricot G, Van Ness B, Scientific Advisors of the International Myeloma F (2003) Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J 4:379–398CrossRefGoogle Scholar
  24. 24.
    Smith A, Wisloff F, Samson D, UKM F, Nordic Myeloma Study G, British Committee for Standards in H (2006) Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol 132:410–451CrossRefGoogle Scholar
  25. 25.
    Terpos E, Moulopoulos LA, Dimopoulos MA (2011) Advances in imaging and the management of myeloma bone disease. J Clin Oncol 29:1907–1915CrossRefGoogle Scholar
  26. 26.
    Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, Tacchetti P, Buttignol S, Perrone G, Brioli A, Pantani L, Terragna C, Carobolante F, Baccarani M, Fanin R, Fanti S, Cavo M (2011) Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 118:5989–5995CrossRefGoogle Scholar
  27. 27.
    Fonti R, Salvatore B, Quarantelli M, Sirignano C, Segreto S, Petruzziello F, Catalano L, Liuzzi R, Rotoli B, Del Vecchio S, Pace L, Salvatore M (2008) 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49:195–200CrossRefGoogle Scholar
  28. 28.
    Kumar SK, Callander NS, Alsina M, Atanackovic D, Biermann JS, Chandler JC, Costello C, Faiman M, Fung HC, Gasparetto C, Godby K, Hofmeister C, Holmberg L, Holstein S, Huff CA, Kassim A, Liedtke M, Martin T, Omel J, Raje N, Reu FJ, Singhal S, Somlo G, Stockerl-Goldstein K, Treon SP, Weber D, Yahalom J, Shead DA, Kumar R (2017) Multiple Myeloma, Version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15:230–269CrossRefGoogle Scholar
  29. 29.
    Caers J, Garderet L, Kortum KM, O’Dwyer ME, van de Donk N, Binder M, Dold SM, Gay F, Corre J, Beguin Y, Ludwig H, Larocca A, Driessen C, Dimopoulos MA, Boccadoro M, Gramatzki M, Zweegman S, Einsele H, Cavo M, Goldschmidt H, Sonneveld P, Delforge M, Auner HW, Terpos E, Engelhardt M (2018) European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica 103:1772–1784CrossRefGoogle Scholar
  30. 30.
    Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, Scherpereel A, Mascaux C, Moreau M, Roelandts M, Alard S, Meert AP, Patz EF Jr, Lafitte JJ, Sculier JP, European Lung Cancer Working Party for the ILCSP (2008) Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 3:6–12CrossRefGoogle Scholar
  31. 31.
    Chatterton BE, Ho Shon I, Baldey A, Lenzo N, Patrikeos A, Kelley B, Wong D, Ramshaw JE, Scott AM (2009) Positron emission tomography changes management and prognostic stratification in patients with oesophageal cancer: results of a multicentre prospective study. Eur J Nucl Med Mol Imaging 36:354–361CrossRefGoogle Scholar
  32. 32.
    Xie P, Li M, Zhao H, Sun X, Fu Z, Yu J (2011) 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis. J Cancer Res Clin Oncol 137:1085–1093CrossRefGoogle Scholar
  33. 33.
    Namura K, Minamimoto R, Yao M, Makiyama K, Murakami T, Sano F, Hayashi N, Tateishi U, Ishigaki H, Kishida T, Miura T, Kobayashi K, Noguchi S, Inoue T, Kubota Y, Nakaigawa N (2010) Impact of maximum standardized uptake value (SUVmax) evaluated by 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 10:667CrossRefGoogle Scholar
  34. 34.
    Deng S, Zhang B, Zhou Y, Xu X, Li J, Sang S, Zhang W (2018) The role of (18)F-FDG PET/CT in multiple myeloma staging according to IMPeTUs: comparison of the Durie-Salmon plus and other staging systems. CMMI 2018:4198673PubMedGoogle Scholar
  35. 35.
    Van de Wiele C, Kruse V, Smeets P, Sathekge M, Maes A (2013) Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging 40:290–301CrossRefGoogle Scholar
  36. 36.
    Barrington SF, Meignan M (2019) Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumor burden. J Nucl Med 60:1096–1102CrossRefGoogle Scholar
  37. 37.
    Gallamini A (2019) In search of platinum meter bar for measurement of metabolic tumor volume in lymphoma. J Nucl Med 60:1094–1095CrossRefGoogle Scholar
  38. 38.
    Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R (2017) EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 44:17–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rosa Fonti
    • 1
    Email author
  • Sara Pellegrino
    • 2
  • Lucio Catalano
    • 3
  • Fabrizio Pane
    • 3
  • Silvana Del Vecchio
    • 2
  • Leonardo Pace
    • 4
  1. 1.Institute of Biostructures and BioimagesNational Research CouncilNaplesItaly
  2. 2.Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
  3. 3.Department of Onco-HematologyUniversity “Federico II”NaplesItaly
  4. 4.Department of Medicine, Surgery and DentistryUniversity of SalernoSalernoItaly

Personalised recommendations