Advertisement

Annals of Hematology

, Volume 98, Issue 12, pp 2703–2709 | Cite as

Transcriptional alteration of DNA repair genes in Philadelphia chromosome negative myeloproliferative neoplasms

  • Martin KirschnerEmail author
  • Anne Bornemann
  • Claudia Schubert
  • Deniz Gezer
  • Kim Kricheldorf
  • Susanne Isfort
  • Tim H. Brümmendorf
  • Mirle Schemionek
  • Nicolas Chatain
  • Tomasz Skorski
  • Steffen KoschmiederEmail author
Original Article

Abstract

Philadelphia negative (Ph-neg) myeloproliferative neoplasms (MPN) are a heterogenous group of clonal stem cell disorders. Approved treatment options include hydroxyurea, anagrelide, and ruxolitinib, which are not curative. The concept of synthetic lethality may become an additional therapeutic strategy in these diseases. In our study, we show that DNA repair is altered in classical Ph-neg MPN, as analyzed by gene expression analysis of 11 genes involved in the homologous recombination repair pathway (HRR), the non-homologous end-joining pathway (NHEJ), and the single-strand break repair pathway (SSB). Altogether, peripheral blood-derived cells from 57 patients with classical Ph-neg MPN and 13 healthy controls were analyzed. LIG3 as an essential part of the SSB was significantly lower expressed compared to controls in all three entities (essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)). In addition, while genes of other DNA-repair pathways showed—possibly compensatory—increased expression in ET (HRR, NHEJ) and PV (NHEJ), MF samples displayed downregulation of all genes involved in NHEJ. With regard to the JAK2 mutational status (analyzed in ET and MF only), no upregulation of the HRR was detected. Though further studies are needed, based on these findings, we conclude that synthetic lethality may become a promising strategy in treating patients with Ph-neg MPN.

Keywords

DNA repair Gene expression Myeloproliferative neoplasms 

Notes

Acknowledgments

We thank Kristina Feldberg for the excellent technical assistance.

The data presented in this publication will be part of the doctoral thesis of Anne Bornemann (co-author) which will be published in future.

Authorship

MK: performed parts of the experiments, analyzed and interpreted the data, and wrote the manuscript. AB: performed parts of the experiments, analyzed the data, and revised the manuscript. CS: performed parts of the experiments, analyzed the data, and revised the manuscript. DG: Collected the clinical data and revised the manuscript. KK: Collected the clinical data and revised the manuscript. SI: interpreted the data and revised the manuscript. THB: analyzed and interpreted the data and revised the manuscript. MS: analyzed and interpreted the data and revised the manuscript. NC: analyzed and interpreted the data and revised the manuscript. TS: analyzed and interpreted the data and revised the manuscript. SK: conceived and planned the study design, interpreted the data, and revised the manuscript.

Funding information

Steffen Koschmieder was supported by a grant of the German research Foundation (DFG KO 2155/6-1).

Compliance with ethical standards

Conflict of interest

THB: Consultancy: Novartis, Pfizer, Janssen, Merck; research funding: Novartis, Pfizer. SK: reports funding from Novartis, Bristol-Myers Squibb and Janssen, as well as consultancy, honoraria, and travel support from Novartis, Incyte, Ariad, Bristol-Myers Squibb, AOP, CTI, Pfizer, Celgene, and Shire. The other authors declare that they have no conflict of interest.

Supplementary material

277_2019_3836_MOESM1_ESM.pptx (86 kb)
ESM 1 (PPTX 85 kb)

References

  1. 1.
    Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M, Harrison C, Hasselbalch HC, Hehlmann R, Hoffman R, Kiladjian JJ, Kröger N, Mesa R, McMullin M, Pardanani A, Passamonti F, Vannucchi AM, Reiter A, Silver RT, Verstovsek S, Tefferi A, European LeukemiaNet (2011) Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 29(6):761–770CrossRefGoogle Scholar
  2. 2.
    Tefferi A, Cortes J, Verstovsek S, Mesa RA, Thomas D, Lasho TL, Hogan WJ, Litzow MR, Allred JB, Jones D, Byrne C, Zeldis JB, Ketterling RP, McClure R, Giles F, Kantarjian HM (2006) Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 108(4):1158–1164CrossRefGoogle Scholar
  3. 3.
    Tefferi A (2012) JAK inhibitors for myeloproliferative neoplasms: clarifying facts from myths. Blood 119(12):2721–2730CrossRefGoogle Scholar
  4. 4.
    Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, Maffioli M, Caramazza D, Passamonti F, Pardanani A (2014) CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 28(7):1472–1477CrossRefGoogle Scholar
  5. 5.
    Iglehart JD, Silver DP (2009) Synthetic lethality--a new direction in cancer-drug development. N Engl J Med 361(2):189–191CrossRefGoogle Scholar
  6. 6.
    Friend SH, Oliff A (1998) Emerging uses for genomic information in drug discovery. N Engl J Med 338(2):125–126CrossRefGoogle Scholar
  7. 7.
    Kamb A (2003) Mutation load, functional overlap, and synthetic lethality in the evolution and treatment of cancer. J Theor Biol 223(2):205–213CrossRefGoogle Scholar
  8. 8.
    Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698CrossRefGoogle Scholar
  9. 9.
    Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott CL, Meier W, Shapira-Frommer R, Safra T et al (2014) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15(8):852–861CrossRefGoogle Scholar
  10. 10.
    Deutsch E, Jarrousse S, Buet D, Dugray A, Bonnet ML, Vozenin-Brotons MC, Guilhot F, Turhan AG, Feunteun J, Bourhis J (2003) Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood 101(11):4583–4588CrossRefGoogle Scholar
  11. 11.
    Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, Padget M, Irvine DA, Sliwinski T, Haas K, Lee J, Geng H, Roy D et al (2013) Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122(7):1293–1304CrossRefGoogle Scholar
  12. 12.
    Nieborowska-Skorska M, Maifrede S, Dasgupta Y, Sullivan K, Flis S, Le BV, Solecka M, Belyaeva EA, Kubovcakova L, Nawrocki M et al (2017) Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Blood 130(26):2848–2859CrossRefGoogle Scholar
  13. 13.
    Bolton-Gillespie E, Schemionek M, Klein HU, Flis S, Hoser G, Lange T, Nieborowska-Skorska M, Maier J, Kerstiens L, Koptyra M et al (2013) Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood 121(20):4175–4183CrossRefGoogle Scholar
  14. 14.
    Puebla-Osorio N, Lacey DB, Alt FW, Zhu C (2006) Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol 26(10):3935–3941CrossRefGoogle Scholar
  15. 15.
    Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G (2005) DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65(10):4020–4030CrossRefGoogle Scholar
  16. 16.
    Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, Rassool FV (2013) Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias. Oncogene 32(14):1784–1793CrossRefGoogle Scholar
  17. 17.
    Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104(12):3746–3753CrossRefGoogle Scholar
  18. 18.
    Stoklosa T, Poplawski T, Koptyra M, Nieborowska-Skorska M, Basak G, Slupianek A, Rayevskaya M, Seferynska I, Herrera L, Blasiak J et al (2008) BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res 68(8):2576–2580CrossRefGoogle Scholar
  19. 19.
    Slupianek A, Dasgupta Y, Ren SY, Gurdek E, Donlin M, Nieborowska-Skorska M, Fleury F, Skorski T (2011) Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia. Blood 118(4):1062–1068CrossRefGoogle Scholar
  20. 20.
    Ding N, Miller SA, Savant SS, O'Hagan HM (2019) JAK2 regulates mismatch repair protein-mediated epigenetic alterations in response to oxidative damage. Environ Mol Mutagen 60(4):308–319CrossRefGoogle Scholar
  21. 21.
    Dianov GL, Hubscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41(6):3483–3490CrossRefGoogle Scholar
  22. 22.
    Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254CrossRefGoogle Scholar
  23. 23.
    Gangat N, Tefferi A, Thanarajasingam G, Patnaik M, Schwager S, Ketterling R, Wolanskyj AP (2009) Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance. Eur J Haematol 83(1):17–21CrossRefGoogle Scholar
  24. 24.
    Tang G, Hidalgo Lopez JE, Wang SA, Hu S, Ma J, Pierce S, Zuo W, Carballo-Zarate AA, Yin CC, Tang Z, Li S, Medeiros LJ, Verstovsek S, Bueso-Ramos CE (2017) Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica 102(9):1511–1518CrossRefGoogle Scholar
  25. 25.
    Okamura T, Kinukawa N, Niho Y, Mizoguchi H (2001) Primary chronic myelofibrosis: clinical and prognostic evaluation in 336 Japanese patients. Int J Hematol 73(2):194–198CrossRefGoogle Scholar
  26. 26.
    Bacher U, Haferlach T, Kern W, Hiddemann W, Schnittger S, Schoch C (2005) Conventional cytogenetics of myeloproliferative diseases other than CML contribute valid information. Ann Hematol 84(4):250–257CrossRefGoogle Scholar
  27. 27.
    Singh NR (2015) Genomic diversity in myeloproliferative neoplasms: focus on myelofibrosis. Transl Pediatr 4(2):107–115PubMedPubMedCentralGoogle Scholar
  28. 28.
    Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL, Wiesmuller L, Vainchenker W (2008) JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood 112(4):1402–1412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of MedicineRWTH Aachen UniversityAachenGermany
  2. 2.Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaUSA

Personalised recommendations