Advertisement

Annals of Hematology

, Volume 98, Issue 12, pp 2769–2780 | Cite as

Enrichment of circulating myeloma cells by immunomagnetic beads combined with flow cytometry for monitoring minimal residual disease and relapse in patients with multiple myeloma

  • Ningning Wang
  • Nahom Tesfaluul
  • Jia Li
  • Xiaojuan Gao
  • Shuai Liu
  • Baohong YueEmail author
Original Article

Abstract

Difficulty in regularly analyzing marrow myeloma cells (MMCs) and low frequency of circulating myeloma cells (CMCs) in blood presents challenges for monitoring minimal residual disease (MRD) in multiple myeloma (MM). We have developed a set of method for enrichment of CMCs by immunomagetic beads (IMB) combined with flow cytometry (IMB-FCM) based on CD38-APC/CD138-APC antibodies in U266-spiked samples and in 122 patient samples. U266 cell capture efficiency of CD38/CD138-IMB-FCM (6.960, 2.574) was 6- and 2-fold higher than that of FCM (1.032), and the sensitivity of FCM and IMB-FCM was 0.01% and 0.001%, respectively. In MM cohort, the positive rate of CMCs by IMB-FCM increased from 60.5~70.0 to 85~87.2% in newly diagnosed/relapsed and partial remission (PR) patients compared with by FCM (P < 0.05). Two complete remission (CR) patients contain certain amounts of CMCs by IMB-FCM while no CMCs and MMCs were detectable by FCM. Patients exhibiting PR and CR upon therapy had much lower CMC and MMC counts than newly diagnosed/relapsed patients (P < 0.005). Based on MRD measurement in BM and PB samples, all FCM-negative BM samples were also paired with FCM/IMB-FCM-negative PB samples among newly diagnosed, relapsed, and PR patients, and FCM-positive BM samples were accompanied by IMB-FCM-positive results in 88% of corresponding PB samples. CMCs strongly associated with other clinical biomarkers of disease burden, including elevated MMCs, β2-MG, sCrea, and DS and ISS stages, and more serious anemia, bone destruction, and renal impairment (P < 0.05). Logistic regression analysis revealed that elevated β2-MG and moderate-to-more anemia were significant risk factors for the presence of CMCs (P < 0.05). As a noninvasive “liquid biopsy” of monitoring MRD, the potential of IMB-FCM for CMC detection may complement or minimize bone marrow aspiration in future treatment of MM patients.

Keywords

Multiple myeloma Circulating myeloma cells Marrow myeloma cells Immunomagnetic beads Flow cytometry 

Notes

Acknowledgments

The present study was supported by the Natural Science Foundation of Henan Province(162300410299). We also thank Dr. Mengde Cao for reviewing and revising the English language of the manuscript.

Author contribution

Baohong Yue conceived the idea and investigated the research study. Ningning Wang designed the study, performed research, analyzed and interpreted data, and wrote the manuscript. Shuai Liu guided and validated the statistical analysis. NahomTesfaluul, Jia Li, and Xiaojuan Gao contributed to writing and reviewing of the manuscript.

Compliance with ethical standards

All study subjects submitted informed consent, and the study was approved by the Medical Research and Research Ethics Committee of the First Affiliated Hospital of Zhengzhou University.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67(1):7–30.  https://doi.org/10.3322/caac.21387 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Röllig C, Knop S, Bornhäuser M (2015) Multiple myeloma. Lancet 385:2197–2208.  https://doi.org/10.1016/s0140-6736(14)60493-1 CrossRefPubMedGoogle Scholar
  3. 3.
    Palumbo A, Rajkumar SV, San Miguel JF, Larocca A, Niesvizky R, Morgan G, Landgren O, Hajek R, Einsele H, Anderson KC, Dimopoulos MA, Richardson PG, Cavo M, Spencer A, Stewart AK, Shimizu K, Lonial S, Sonneveld P, Durie BG, Moreau P, Orlowski RZ (2014) International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 32 (6):587-600. doi: https://doi.org/10.1200/JCO.2013.48.7934 CrossRefGoogle Scholar
  4. 4.
    Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5):2516–2520.  https://doi.org/10.1182/blood-2007-10116129 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gonsalves WI, Rajkumar SV, Gertz MA, Dispenzieri A, Lacy MQ, Buadi FK, Dingli D, Go RS, Leung N, Kapoor P, Hayman SR, Lust JA, Russell SJ, Zeldenrust SR, Hwa YL, Kourelis TV, Kyle RA, Kumar SK (2016) Clinical course and outcomes of patients with multiple myeloma who relapse after autologous stem cell therapy. Bone Marrow Transplant 51(8):1156–1158.  https://doi.org/10.1038/bmt.2016.91 CrossRefGoogle Scholar
  6. 6.
    Paiva B, van Dongen JJ, Orfao A (2015) New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 125(20):3059–3068.  https://doi.org/10.1182/blood-2014-11568907 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, Richardson P, Caltagirone S, Lahuerta JJ, Facon T, Bringhen S, Gay F, Attal M, Passera R, Spencer A, Offidani M, Kumar S, Musto P, Lonial S, Petrucci MT, Orlowski RZ, Zamagni E, Morgan G, Dimopoulos MA, Durie BG, Anderson KC, Sonneveld P, San Miguel J, Cavo M, Rajkumar SV, Moreau P (2015) Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol Off J Am Soc Clin Oncol 33(26):2863–2869.  https://doi.org/10.1200/JCO.2015.61.2267 CrossRefGoogle Scholar
  8. 8.
    Bustoros M, Mouhieddine T, Detappe A, Ghobrial I (2017) Established and novel prognostic biomarkers in multiple myeloma. Am Soc Clin Oncol Educ Book 37:548–560.  https://doi.org/10.14694/EDBK_175175 CrossRefPubMedGoogle Scholar
  9. 9.
    Qasaimeh MA, Wu YC, Bose S, Menachery A, Talluri S, Gonzalez G, Fulciniti M, Karp JM, Prabhala RH, Karnik R (2017) Isolation of circulating plasma cells in multiple myeloma using CD138 antibody-based capture in a microfluidic device. Sci Rep 7:45681.  https://doi.org/10.1038/srep45681 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kubaczkova V, Sedlarikova L, Bollova B, Sandecka V, Stork M, Pour L, Sevcikova S (2017) Liquid biopsies-the clinics and the molecules. Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti 30(Supplementum2):13–20.  https://doi.org/10.14735/amko20172S13 CrossRefGoogle Scholar
  11. 11.
    Kamande JW, Lindell MAM, Witek MA, Voorhees PM, Soper SA (2018) Isolation of circulating plasma cells from blood of patients diagnosed with clonal plasma cell disorders using cell selection microfluidics. Integr Biol 10(2):82–91.  https://doi.org/10.1039/c7ib00183e CrossRefGoogle Scholar
  12. 12.
    Vagnoni D, Travaglini F, Pezzoni V, Ruggieri M, Bigazzi C, Dalsass A, Mestichelli F, Troiani E, Falcioni S, Mazzotta S, Natale A, Angelini M, Ferretti S, Angelini S, Galieni P (2015) Circulating plasma cells in newly diagnosed symptomatic multiple myeloma as a possible prognostic marker for patients with standard-risk cytogenetics. Br J Haematol 170(4):523–531.  https://doi.org/10.1111/bjh.13484 CrossRefPubMedGoogle Scholar
  13. 13.
    An G, Qin X, Acharya C, Xu Y, Deng S, Shi L, Zang M, Sui W, Yi S, Li Z, Hao M, Feng X, Jin F, Zou D, Qi J, Zhao Y, Tai YT, Wang J, Qiu L (2015) Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients. Ann Hematol 94(2):257–264.  https://doi.org/10.1007/s00277-014-2211-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Peceliunas V, Janiulioniene A, Matuzeviciene R, Zvirblis T, Griskevicius L (2012) Circulating plasma cells predict the outcome of relapsed or refractory multiple myeloma. Leuk Lymphoma 53(4):641–647.  https://doi.org/10.3109/10428194.2011.627481 CrossRefPubMedGoogle Scholar
  15. 15.
    Gonsalves WI, Morice WG, Rajkumar V, Gupta V, Timm MM, Dispenzieri A, Buadi FK, Lacy MQ, Singh PP, Kapoor P, Gertz MA, Kumar SK (2014) Quantification of clonal circulating plasma cells in relapsed multiple myeloma. Br J Haematol 167(4):500–505.  https://doi.org/10.1111/bjh.13067 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Foulk B, Schaffer M, Gross S, Rao C, Smirnov D, Connelly MC, Chaturvedi S, Reddy M, Brittingham G, Mata M, Repollet M, Rojas C, Auclair D, DeRome M, Weiss B, Sasser AK (2018) Enumeration and characterization of circulating multiple myeloma cells in patients with plasma cell disorders. Br J Haematol 180(1):71–81.  https://doi.org/10.1111/bjh.15003 CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar S, Rajkumar SV, Greipp PR, Witzig TE (2004) Cell proliferation of myeloma plasma cells: comparison of the blood and marrow compartments. Am J Hematol 77(1):7–11.  https://doi.org/10.1002/ajh.20125 CrossRefPubMedGoogle Scholar
  18. 18.
    Gonsalves WI, Rajkumar SV, Gupta V, Morice WG, Timm MM, Singh PP, Dispenzieri A, Buadi FK, Lacy MQ, Kapoor P, Gertz MA, Kumar SK (2014) Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma. Leukemia 28(10):2060–2065.  https://doi.org/10.1038/leu.2014.98 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Oberle A, Brandt A, Voigtlaender M, Thiele B, Radloff J, Schulenkorf A, Alawi M, Akyuz N, Marz M, Ford CT, Krohn-Grimberghe A, Binder M (2017) Monitoring multiple myeloma by next-generation sequencing of V(D) J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica 102(6):1105–1111.  https://doi.org/10.3324/haematol.2016.161414 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA, Sureda A, Montejano L, Gutierrez NC, Garcia de Coca A, de Las HN, Mateos MV, Lopez-Berges MC, Garcia-Boyero R, Galende J, Hernandez J, Palomera L, Carrera D, Martinez R, de la Rubia J, Martin A, Blade J, Lahuerta JJ, Orfao A, San Miguel JF, Groups GPCS (2008) Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 112(10):4017–4023.  https://doi.org/10.1182/blood-2008-05-159624 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li J, Wang N, Tesfaluul N, Gao X, Liu S, Yue B (2017) Prognostic value of circulating plasma cells in patients with multiple myeloma: a meta-analysis. PLoS One 12(7):e0181447.  https://doi.org/10.1371/journal.pone.0181447 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chakraborty R, Muchtar E, Kumar SK, Jevremovic D, Buadi FK, Dingli D, Dispenzieri A, Hayman SR, Hogan WJ, Kapoor P, Lacy MQ, Leung N, Gertz MA (2016) Risk stratification in myeloma by detection of circulating plasma cells prior to autologous stem cell transplantation in the novel agent era. Blood Cancer J 6(12):e512.  https://doi.org/10.1038/bcj.2016.117 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Miller MC, Doyle GV, Terstappen LW (2010) Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J Oncol 2010:617421.  https://doi.org/10.1155/2010/617421 CrossRefPubMedGoogle Scholar
  24. 24.
    Puig N, Sarasquete ME, Alcoceba M, Balanzategui A, Chillon MC, Sebastian E, Marin LA, Diaz MG, San Miguel JF, Sanz RG (2013) The use of CD138 positively selected marrow samples increases the applicability of minimal residual disease assessment by PCR in patients with multiple myeloma. Ann Hematol 92(1):97–100.  https://doi.org/10.1007/s00277-012-1566-3 CrossRefPubMedGoogle Scholar
  25. 25.
    Christensen T, Deng W, McMahill B, Schappert J, Liu W, Saleki R, Zou YS (2014) Utilization of magnetic-activated cell sorting and high-density single nucleotide polymorphism microarrays improves diagnostic yield and prognostic value in clinical testing for patients with multiple myeloma and normal routine chromosome study. Acta Haematol 132(2):233–236.  https://doi.org/10.1159/000361074 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H, Dalva K, Fuhler G, Gratama J, Hose D, Kovarova L, Lioznov M, Mateo G, Morilla R, Mylin AK, Omede P, Pellat-Deceunynck C, Perez Andres M, Petrucci M, Ruggeri M, Rymkiewicz G, Schmitz A, Schreder M, Seynaeve C, Spacek M, de Tute RM, Van Valckenborgh E, Weston-Bell N, Owen RG, San Miguel JF, Sonneveld P, Johnsen HE, Network EM (2008) Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 93(3):431–438.  https://doi.org/10.3324/haematol.11080 CrossRefPubMedGoogle Scholar
  27. 27.
    Lin P, Owens R, Tricot G, Wilson CS (2004) Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 121(4):482–488.  https://doi.org/10.1309/74r4tb90buwh27jx CrossRefPubMedGoogle Scholar
  28. 28.
    Frigyesi I, Adolfsson J, Ali M, Christophersen MK, Johnsson E, Turesson I, Gullberg U, Hansson M, Nilsson B (2014) Robust isolation of malignant plasma cells in multiple myeloma. Blood 123(9):1336–1340.  https://doi.org/10.1182/blood-2013-09-529800 CrossRefPubMedGoogle Scholar
  29. 29.
    Muz B, de la Puente P, Azab F, Luderer MJ, King J, Vij R, Azab AK (2016) A CD138-independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma. Br J Haematol 173(1):70–81.  https://doi.org/10.1111/bjh.13927 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang W, Gu AZ, Zeng SY, Li D, He M, Shi HC (2011) Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples. J Microbiol Methods 84(3):447–453.  https://doi.org/10.1016/j.mimet.2011.01.011 CrossRefPubMedGoogle Scholar
  31. 31.
    Reidt U, Geisberger B, Heller C, Friedberger A (2011) Automated immunomagnetic processing and separation of Legionella pneumophila with manual detection by sandwich ELISA and PCR amplification of the ompS gene. J Lab Autom 16(2):157–164.  https://doi.org/10.1016/j.jala.2010.07.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Cumova J, Kovarova L, Potacova A, Buresova I, Kryukov F, Penka M, Michalek J, Hajek R (2010) Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. Int J Hematol 92(2):314–319.  https://doi.org/10.1007/s12185-010-0651-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Burgos L, Paiva B (2018) EuroFlow-based next-generation flow cytometry for detection of circulating tumor cells and minimal residual disease in multiple myeloma. Methods Mol Biol 1792:15–34.  https://doi.org/10.1007/978-1-4939-7865-6_2 CrossRefPubMedGoogle Scholar
  34. 34.
    Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, Rhoades J, Liu CJ, Huynh D, Reed SC, Gydush G, Salem KZ, Rotem D, Freymond C, Yosef A, Perilla-Glen A, Garderet L, Van Allen EM, Kumar S, Love JC, Getz G, Adalsteinsson VA, Ghobrial IM (2018) Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun 2018(9):1691–1701.  https://doi.org/10.1038/s41467-018-04001-5 CrossRefGoogle Scholar
  35. 35.
    Mishima Y, Paiva B, Shi J, Park J, Manier S, Takagi S, Massoud M, Perilla-Glen A, Aljawai Y, Huynh D, Roccaro AM, Sacco A, Capelletti M, Detappe A, Alignani D, Anderson KC, Munshi NC, Prosper F, Lohr JG, Ha G, Freeman SS, Van Allen EM, Adalsteinsson VA, Michor F, San Miguel JF, Ghobrial IM (2017) The mutational landscape of circulating tumor cells in multiple myeloma. Cell Rep 19(1):218–224.  https://doi.org/10.1016/j.celrep.2017.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fujisawa M, Suehara Y, Fukumoto K, Narit K, Usui Y, Takeuchi M, Matsue K, Takamatsu H (2015) Clinical significance of circulating plasma cells in myeloma: multiparameter flow cytometric analysis. Blood 126(23):5352CrossRefGoogle Scholar
  37. 37.
    Ghobrial IM (2012) Myeloma as a model for the process of metastasis: implications for therapy. Blood 120(1):20–30.  https://doi.org/10.1182/blood-2012-01-379024 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nowakowski GS, Witzig TE, Dingli D, Tracz MJ, Gertz MA, Lacy MQ, Lust JA, Dispenzieri A, Greipp PR, Kyle RA, Rajkumar SV (2005) Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 106(7):2276–2279.  https://doi.org/10.1182/blood-2005-05-1858 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Paiva B, Paino T, Sayagues JM, Garayoa M, SanSegundo L, Martín M, Mota I, Sanchez ML, Bárcena P, AiresMejia I, Corchete L, Jimenez C, GarciaSanz R, Gutierrez NC, Ocio EM, Mateos MV, Vidriales MB, Orfao A, San Miguel JF (2013) Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 122(22):3591–3598.  https://doi.org/10.1182/blood-201306-510453 CrossRefPubMedGoogle Scholar
  40. 40.
    Kumar S, Witzig TE, Greipp PR, Rajkumar SV (2003) Bone marrow angiogenesis and circulating plasma cells in multiple myeloma. Br J Haematol 122(2):272–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Laboratory Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Laboratory Medicinethe First People’s Hospital of PingdingshanPingdingshanChina
  3. 3.Department of Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  4. 4.Faculty of Laboratory MedicineZhengzhou UniversityZhengzhouChina
  5. 5.Key Laboratory Medicine of Henan Province, Faculty of Laboratory MedicineZhengzhou UniversityZhengzhouChina
  6. 6.Open Laboratory, Henan Province Key Subject of Clinical MedicineZhengzhouChina

Personalised recommendations