Update on management and progress of novel therapeutics for R/R AML: an Iberian expert panel consensus
Abstract
A significant proportion of adult patients with acute myeloid leukemia (AML) fail to achieve complete remission or will relapse later on after achieving it. Prognosis for relapsed or refractory (R/R) AML patients remains discouraging, with the main curative option still relying on hematopoietic stem cell transplant (HSCT) for those who are eligible. Beyond morphological bone marrow and peripheral blood assessment, evaluation of patient performance status and comorbidities, as well as genetic/molecular characterization, is crucial to make an accurate diagnosis and prognosis, which will be useful to select the most appropriate treatment. Emerging strategies are mainly focusing on the development of immune- and molecular-based approaches. Novel targeted therapies are generally well tolerated, potentially allowing them to be administered alone or in combination with classical chemotherapy agents. Enrolment in clinical trials should be considered first option for R/R AML patients, either as a bridge to HSCT or to benefit from novel therapies that eventually may prolong survival and improve quality of life. An Iberian expert panel has reviewed the recent advances in the management of R/R AML with the aim to develop updated evidence and expert opinion-based recommendations.
Keywords
Acute myeloid leukemia Relapsed Refractory Treatment Targeted therapiesNotes
Author contributions
The authors met the criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). The authors were fully responsible for all content and editorial decisions, were involved at all stages of manuscript development and approved the final version that reflects the authors’ interpretations and conclusions.
Funding information
Financial support for medical editorial assistance, copyright permission and publication costs was provided by Daiichi Sankyo, Inc., a member of the Daiichi Sankyo Group.
Compliance with ethical standards
Conflict of interest
PM has received research funding from Teva, Celgene, Janssen, Novartis, Daiichi Sankyo, Pfizer and Karyopharm; has received honoraria from Teva, Celgene, Janssen, Novartis, Daiichi Sankyo, Pfizer and Incyte; and has served in a consulting or advisory role for Teva, Celgene, Janssen, Novartis, Daiichi Sankyo, Pfizer, Karyopharm, Incyte and Abbvie. JS has received research funding from Novartis and Amgen; has received honoraria from Novartis, Abbvie, Pfizer, Daiichi Sankyo and Astellas; and has served in a consulting or advisory role for Novartis, Abbvie, Pfizer, Daiichi Sankyo, Gilead, Astellas, Celgene and Roche. JS is a member of DMC from Gamida Cell. JI has received honoraria from Novartis and Daiichi Sankyo, and has served in a consulting or advisory role for Daiichi Sankyo. JE has received research funding from Celgene and Novartis; has received honoraria from Celgene, Janssen, Novartis, Daiichi Sankyo and Astellas; and has served in a consulting or advisory role for Celgene, Janssen, Novartis, Pfizer, Daiichi Sankyo, Jazz Pharmaceuticals, Abbvie, Roche, Teva and Incyte. JEG has received a speaker honorarium (speaker’s fees) from Abbvie, Amgen, Janssen, Pfizer and Daiichi Sankyo; and has served in a consulting or advisory role for Abbvie, Pfizer, Roche and Daiichi Sankyo.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
References
- 1.Lim SH, Dubielecka PM, Raghunathan VM (2017) Molecular targeting in acute myeloid leukemia. J Transl Med 15(183):1–13. https://doi.org/10.1186/s12967-017-1281-x CrossRefGoogle Scholar
- 2.Megías-Vericat JE, Martínez-Cuadrón D, Sanz MA, Montesinos P (2018) Salvage regimens using conventional chemotherapy agents for relapsed/refractory adult AML patients: a systematic literature review. Ann Hematol 97(7):1115–1153. https://doi.org/10.1007/s00277-018-3304-y CrossRefPubMedGoogle Scholar
- 3.Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien HF, Wei AH, Löwenberg B, Bloomfield CD (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447. https://doi.org/10.1182/blood-2016-08-733196 CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Ravandi F (2011) Primary refractory acute myeloid leukaemia - in search of better definitions and therapies. Br J Haematol 155(4):413–419. https://doi.org/10.1111/j.1365-2141.2011.08869.x CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Ferguson P, Hills RK, Grech A, Betteridge S, Kjeldsen L, Dennis M, Vyas P, Goldstone AH, Milligan D, Clark RE, Russell NH, Craddock C, UK NCRI AML Working Group (2016) An operational definition of primary refractory acute myeloid leukemia allowing early identification of patients who may benefit from allogeneic stem cell transplantation. Haematologica 101(11):1351–1358. https://doi.org/10.3324/haematol.2016.148825 CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Thol F, Schlenk RF, Heuser M, Ganser A (2015) How I treat refractory and early relapsed acute myeloid leukemia. Blood 126(3):319–327. https://doi.org/10.1182/blood-2014-10-551911 CrossRefPubMedGoogle Scholar
- 7.Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ, Rees JK, Stevens RF, Walker H (1999) A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br J Haematol 107(1):69–79CrossRefGoogle Scholar
- 8.Cheson BD, Bennett JM, Kopecky KJ et al (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21(24):4642–4649. https://doi.org/10.1200/jco.2003.04.036 CrossRefPubMedGoogle Scholar
- 9.Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD, European LeukemiaNet (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474. https://doi.org/10.1182/blood-2009-07-235358 CrossRefPubMedGoogle Scholar
- 10.Schlenk RF, Benner A, Hartmann F, del Valle F, Weber C, Pralle H, Fischer JT, Gunzer U, Pezzutto A, Weber W, Grimminger W, Preiss J, Hensel M, Fröhling S, Döhner K, Haas R, Döhner H, AML Study Group Ulm (AMLSG ULM) (2003) Risk-adapted postremission therapy in acute myeloid leukemia: results of the German multicenter AML HD93 treatment trial. Leukemia 17(8):1521–1528. https://doi.org/10.1038/sj.leu.2403009 CrossRefPubMedGoogle Scholar
- 11.National Comprehensive Cancer Network (NCCN) Guidelines: acute myeloid leukemia. 2016. (2016).Google Scholar
- 12.Ramos NR, Mo CC, Karp JE, Hourigan CS (2015) Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J Clin Med 4(4):665–695. https://doi.org/10.3390/jcm4040665 CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Schlenk RF, Frech P, Weber D, Brossart P, Horst HA, Kraemer D, Held G, Ringhoffer M, Burchardt A, Kobbe G, Götze K, Nachbaur D, Fischer T, Lübbert M, Salih HR, Salwender H, Wulf G, Koller E, Wattad M, Fiedler W, Kremers S, Kirchen H, Hertenstein B, Paschka P, Gaidzik VI, Teleanu V, Heuser M, Thol F, Döhner K, Krauter J, Ganser A, Döhner H, the German-Austrian AMLSG (2017) Impact of pretreatment characteristics and salvage strategy on outcome in patients with relapsed acute myeloid leukemia. Leukemia 31(5):1217–1220. https://doi.org/10.1038/leu.2017.22 CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Bose P, Vachhani P, Cortes JE (2017) Treatment of relapsed/refractory acute myeloid leukemia. Curr Treat Options in Oncol 18(3):17–30. https://doi.org/10.1007/s11864-017-0456-2 CrossRefGoogle Scholar
- 15.Estey E (2016) Why are there so few randomized trials for patients with primary refractory acute myeloid leukemia? Best Pract Res Clin Haematol 29(4):324–328. https://doi.org/10.1016/j.beha.2016.10.003 CrossRefPubMedGoogle Scholar
- 16.Bejanyan N, Weisdorf DJ, Logan BR, Wang HL, Devine SM, de Lima M, Bunjes DW, Zhang MJ (2015) Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study. Biol Blood Marrow Transplant 21(3):454–459. https://doi.org/10.1016/j.bbmt.2014.11.007 CrossRefPubMedGoogle Scholar
- 17.Vosberg S, Hartmann L, Metzeler KH et al (2018) Relapse of acute myeloid leukemia after allogeneic stem cell transplantation is associated with gain of WT1 alterations and high mutation load. Haematologica. https://doi.org/10.3324/haematol.2018.193102 CrossRefGoogle Scholar
- 18.Craddock C, Versluis J, Labopin M, Socie G, Huynh A, Deconinck E, Volin L, Milpied N, Bourhis JH, Rambaldi A, Chevallier P, Blaise D, Manz M, Vellenga E, Vekemans MC, Maertens J, Passweg J, Vyas P, Schmid C, Löwenberg B, Ossenkoppele G, Mohty M, Cornelissen JJ, Nagler A, Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation and HOVON-SAKK (2018) Distinct factors determine the kinetics of disease relapse in adults transplanted for acute myeloid leukaemia. J Intern Med 283(4):371–379. https://doi.org/10.1111/joim.12720 CrossRefPubMedGoogle Scholar
- 19.Breems DA, Van Putten WL, Huijgens PC et al (2005) Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol 23(9):1969–1978. https://doi.org/10.1200/jco.2005.06.027 CrossRefPubMedGoogle Scholar
- 20.Estey E, Kornblau S, Pierce S, Kantarjian H, Beran M, Keating M (1996) A stratification system for evaluating and selecting therapies in patients with relapsed or primary refractory acute myelogenous leukemia. Blood 88(2):756CrossRefGoogle Scholar
- 21.Verma D, Kantarjian H, Faderl S, O'Brien S, Pierce S, Vu K, Freireich E, Keating M, Cortes J, Ravandi F (2010) Late relapses in acute myeloid leukemia: analysis of characteristics and outcome. Leuk Lymphoma 51(5):778–782. https://doi.org/10.3109/10428191003661852 CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Ravandi F, Kantarjian H, Faderl S, Garcia-Manero G, O'Brien S, Koller C, Pierce S, Brandt M, Kennedy D, Cortes J, Beran M (2010) Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk Res 34(6):752–756. https://doi.org/10.1016/j.leukres.2009.10.001 CrossRefPubMedGoogle Scholar
- 23.Wattad M, Weber D, Döhner K, Krauter J, Gaidzik VI, Paschka P, Heuser M, Thol F, Kindler T, Lübbert M, Salih HR, Kündgen A, Horst HA, Brossart P, Götze K, Nachbaur D, Köhne CH, Ringhoffer M, Wulf G, Held G, Salwender H, Benner A, Ganser A, Döhner H, Schlenk RF (2017) Impact of salvage regimens on response and overall survival in acute myeloid leukemia with induction failure. Leukemia 31(6):1306–1313. https://doi.org/10.1038/leu.2017.23 CrossRefPubMedGoogle Scholar
- 24.Qin YZ, Zhu HH, Jiang Q, Jiang H, Zhang LP, Xu LP, Wang Y, Liu YR, Lai YY, Shi HX, Jiang B, Huang XJ (2014) Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: a comprehensive large-scale study from a single Chinese center. Leuk Res 38(12):1435–1440. https://doi.org/10.1016/j.leukres.2014.09.017 CrossRefPubMedGoogle Scholar
- 25.Hospital MA, Prebet T, Bertoli S et al (2014) Core-binding factor acute myeloid leukemia in first relapse: a retrospective study from the French AML Intergroup. Blood 124(8):1312–1319. https://doi.org/10.1182/blood-2014-01-549212 CrossRefPubMedGoogle Scholar
- 26.Bergua JM, Montesinos P, Martínez-Cuadrón D et al (2016) A prognostic model for survival after salvage treatment with FLAG-Ida +/- gemtuzumab-ozogamicine in adult patients with refractory/relapsed acute myeloid leukaemia. Br J Haematol 174(5):700–710. https://doi.org/10.1111/bjh.14107 CrossRefPubMedGoogle Scholar
- 27.Chevallier P, Labopin M, Turlure P, Prebet T, Pigneux A, Hunault M, Filanovsky K, Cornillet-Lefebvre P, Luquet I, Lode L, Richebourg S, Blanchet O, Gachard N, Vey N, Ifrah N, Milpied N, Harousseau JL, Bene MC, Mohty M, Delaunay J (2011) A new Leukemia Prognostic Scoring System for refractory/relapsed adult acute myelogeneous leukaemia patients: a GOELAMS study. Leukemia 25(6):939–944. https://doi.org/10.1038/leu.2011.25 CrossRefPubMedGoogle Scholar
- 28.Greif PA, Hartmann L, Vosberg S, Stief SM, Mattes R, Hellmann I, Metzeler KH, Herold T, Bamopoulos SA, Kerbs P, Jurinovic V, Schumacher D, Pastore F, Bräundl K, Zellmeier E, Ksienzyk B, Konstandin NP, Schneider S, Graf A, Krebs S, Blum H, Neumann M, Baldus CD, Bohlander SK, Wolf S, Görlich D, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K (2018) Evolution of cytogenetically normal acute myeloid leukemia during therapy and relapse: an exome sequencing study of 50 patients. Clin Cancer Res 24(7):1716–1726. https://doi.org/10.1158/1078-0432.ccr-17-2344 CrossRefPubMedGoogle Scholar
- 29.Uy GL, Duncavage EJ, Chang GS, Jacoby MA, Miller CA, Shao J, Heath S, Elliott K, Reineck T, Fulton RS, Fronick CC, O'Laughlin M, Ganel L, Abboud CN, Cashen AF, DiPersio J, Wilson RK, Link DC, Welch JS, Ley TJ, Graubert TA, Westervelt P, Walter MJ (2017) Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy. Leukemia 31(4):872–881CrossRefGoogle Scholar
- 30.Kronke J, Bullinger L, Teleanu V et al (2013) Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 122(1):100–108. https://doi.org/10.1182/blood-2013-01-479188 CrossRefPubMedGoogle Scholar
- 31.O’Donnell MR, Tallman MS, Abboud CN et al (2017) Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15(7):926–957. https://doi.org/10.6004/jnccn.2017.0116 CrossRefGoogle Scholar
- 32.Araki D, Othus M, Walter RB, Becker PS, Sandhu V, Estey EH (2016) Does outcome of second salvage therapy in relapsed or refractory acute myeloid leukemia depend on intensity of either first or second salvage therapy? Leuk Lymphoma 57(5):1205–1207. https://doi.org/10.3109/10428194.2015.1079316 CrossRefPubMedGoogle Scholar
- 33.Stahl M, DeVeaux M, Montesinos P, Itzykson R, Ritchie EK, Sekeres MA, Barnard JD, Podoltsev NA, Brunner AM, Komrokji RS, Bhatt VR, al-Kali A, Cluzeau T, Santini V, Fathi AT, Roboz GJ, Fenaux P, Litzow MR, Perreault S, Kim TK, Prebet T, Vey N, Verma V, Germing U, Bergua JM, Serrano J, Gore SD, Zeidan AM (2018) Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Advances 2(8):923–932. https://doi.org/10.1182/bloodadvances.2018016121 CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Abutalib S, Tallman MS (2008) Relapsed and refractory acute myeloid leukemia. In: Acute leukemias. Springer, Berlin Heidelberg, pp 57–76. https://doi.org/10.1007/978-3-540-72304-2_4 CrossRefGoogle Scholar
- 35.Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ (2005) Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23(24):5675–5687. https://doi.org/10.1200/jco.2005.07.061 CrossRefPubMedGoogle Scholar
- 36.Bastos-Oreiro M, Pérez-Corral A, Martínez-Laperche C et al (2014) Prognostic impact of minimal residual disease analysis by flow cytometry in patients with acute myeloid leukemia before and after allogeneic hemopoietic stem cell transplantation. Eur J Haematol 93(3):239–246. https://doi.org/10.1111/ejh.12336 CrossRefPubMedGoogle Scholar
- 37.Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, Mielcarek M, Estey EH, Appelbaum FR, Walter RB (2016) Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol 34(4):329–336. https://doi.org/10.1200/jco.2015.63.3826 CrossRefPubMedGoogle Scholar
- 38.Guolo F, Minetto P, Clavio M, Miglino M, Galaverna F, Raiola AM, di Grazia C, Colombo N, Pozzi S, Ibatici A, Bagnasco S, Guardo D, Kunkl A, Ballerini F, Ghiggi C, Lemoli RM, Gobbi M, Bacigalupo A (2017) Combining flow cytometry and WT1 assessment improves the prognostic value of pre-transplant minimal residual disease in acute myeloid leukemia. Haematologica 102(9):e348–e351. https://doi.org/10.3324/haematol.2017.167254 CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Ravandi F, Walter RB, Freeman SD (2018) Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv 2(11):1356–1366. https://doi.org/10.1182/bloodadvances.2018016378 CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Paietta E (2018) Consensus on MRD in AML? Blood 131(12):1265–1266. https://doi.org/10.1182/blood-2018-01-828145 CrossRefPubMedGoogle Scholar
- 41.Kharfan-Dabaja MA, Labopin M, Polge E, Nishihori T, Bazarbachi A, Finke J, Stadler M, Ehninger G, Lioure B, Schaap N, Afanasyev B, Yeshurun M, Isaksson C, Maertens J, Chalandon Y, Schmid C, Nagler A, Mohty M (2018) Association of second allogeneic hematopoietic cell transplant vs. donor lymphocyte infusion with overall survival in patients with acute myeloid leukemia relapse. JAMA Oncology 4(9):1245–1253. https://doi.org/10.1001/jamaoncol.2018.2091 CrossRefPubMedGoogle Scholar
- 42.Li GX, Wang L, Yaghmour B, Ramsingh G, Yaghmour G (2018) The role of FLT3 inhibitors as maintenance therapy following hematopoietic stem cell transplant. Leuk Res Rep 10:26–36. https://doi.org/10.1016/j.lrr.2018.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Yang J, Cai Y, Jiang J, Wan L, Bai H, Zhu J, Li S, Wang C, Song X (2018) Early tapering of immunosuppressive agents after HLA-matched donor transplantation can improve the survival of patients with advanced acute myeloid leukemia. Ann Hematol 97(3):497–507. https://doi.org/10.1007/s00277-017-3204-6 CrossRefPubMedGoogle Scholar
- 44.Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, Klco JM, Helton NM, O'Laughlin M, Fronick CC, Fulton RS, Wilson RK, Wartman LD, Welch JS, Heath SE, Baty JD, Payton JE, Graubert TA, Link DC, Walter MJ, Westervelt P, Ley TJ, DiPersio J (2018) Immune escape of relapsed AML cells after allogeneic transplantation. N Engl J Med 379(24):2330–2341. https://doi.org/10.1056/NEJMoa1808777 CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Larrosa-García M, Baer MR (2017) FLT3 inhibitors in acute myeloid leukemia: current status and future directions. Mol Cancer Ther 16(6):991–1001. https://doi.org/10.1158/1535-7163.mct-16-0876 CrossRefPubMedPubMedCentralGoogle Scholar
- 46.El Fakih R, Rasheed W, Hawsawi Y, Alsermani M, Hassanein M (2018) Targeting FLT3 mutations in acute myeloid leukemia. Cells 7(1). https://doi.org/10.3390/cells7010004 CrossRefGoogle Scholar
- 47.Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X, Estrov Z, Quintás-Cardama A, Small D, Cortes J, Andreeff M (2008) Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100(3):184–198. https://doi.org/10.1093/jnci/djm328 CrossRefPubMedGoogle Scholar
- 48.Rautenberg C, Nachtkamp K, Dienst A, Schmidt PV, Heyn C, Kondakci M, Germing U, Haas R, Kobbe G, Schroeder T (2017) Sorafenib and azacitidine as salvage therapy for relapse of FLT3-ITD mutated AML after allo-SCT. Eur J Haematol 98(4):348–354. https://doi.org/10.1111/ejh.12832 CrossRefPubMedGoogle Scholar
- 49.Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, Fox E, Ehninger G, Feldman EJ, Schiller GJ, Klimek VM, Nimer SD, Gilliland DG, Dutreix C, Huntsman-Labed A, Virkus J, Giles FJ (2010) Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 28(28):4339–4345. https://doi.org/10.1200/jco.2010.28.9678 CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, Kadia T, Estrov Z, Garcia-Manero G, Konopleva M, Rajkhowa T, Durand M, Andreeff M, Levis M, Cortes J (2015) Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol 90(4):276–281. https://doi.org/10.1002/ajh.23924 CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Cortes JE, Perl AE, Dombret H et al (2012) Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients ≥60 years of age with FLT3 ITD positive or negative relapsed/refractory acute myeloid leukemia. Blood 120(21):48CrossRefGoogle Scholar
- 52.Levis M (2013) Quizartinib in acute myeloid leukemia. Clin Adv Hematol Oncol 11(9):586–588PubMedPubMedCentralGoogle Scholar
- 53.Borthakur G, Kantarjian HM, O’Brien S et al (2014) The combination of quizartinib with azacitidine or low dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood 124(21):388–388CrossRefGoogle Scholar
- 54.Sandmaier BM, Khaled SK, Oran B et al (2014) Results of a phase 1 study of quizartinib (AC220) as maintenance therapy in subjects with acute myeloid leukemia in remission following allogeneic hematopoietic cell transplantation. Blood 124(21):428–428CrossRefGoogle Scholar
- 55.Perl AE, Altman JK, Cortes JE et al (2016) Final results of the chrysalis trial: a first-in-human phase 1/2 dose-escalation, dose-expansion study of gilteritinib (ASP2215) in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Blood 128(22):1069–1069CrossRefGoogle Scholar
- 56.Altman JK, Perl AE, Cortes JE et al (2015) Antileukemic activity and tolerability of ASP2215 80 mg and greater in FLT3 mutation-positive subjects with relapsed or refractory acute myeloid leukemia: results from a phase 1/2, open-label, dose-escalation/dose-response study. Blood 126(23):321–321CrossRefGoogle Scholar
- 57.Cortes JE, Khaled S, Martinelli G et al (2019) Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. https://doi.org/10.1016/s1470-2045(19)30150-0 CrossRefGoogle Scholar
- 58.Perl AE, Martinelli G, Cortes JE et al. CT184 - Gilteritinib significantly prolongs overall survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML): results from the phase III ADMIRAL trial In: Proceedings of the 110th Annual Meeting of the American Association for Cancer Research, Atlanta, GA, 2019.Google Scholar
- 59.Randhawa JK, Kantarjian HM, Borthakur G et al (2014) Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations. Blood 124(21):389–389CrossRefGoogle Scholar
- 60.Ohanian M, Kantarjian HM, Borthakur G et al (2016) Efficacy of a type I FLT3 inhibitor, crenolanib, with idarubicin and high-dose ara-C in multiply relapsed/refractory FLT3+ AML. Blood 128(22):2744–2744CrossRefGoogle Scholar
- 61.Shah NP, Talpaz M, Deininger MW et al (2013) Ponatinib in patients with refractory acute myeloid leukaemia: findings from a phase 1 study. Br J Haematol 162(4):548–552. https://doi.org/10.1111/bjh.12382 CrossRefPubMedGoogle Scholar
- 62.Smith CC, Lasater EA, Zhu X, Lin KC, Stewart WK, Damon LE, Salerno S, Shah NP (2013) Activity of ponatinib against clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD. Blood 121(16):3165–3171. https://doi.org/10.1182/blood-2012-07-442871 CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Jen EY, Ko CW, Lee JE, del Valle P, Aydanian A, Jewell C, Norsworthy KJ, Przepiorka D, Nie L, Liu J, Sheth CM, Shapiro M, Farrell AT, Pazdur R (2018) FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res 24(14):3242–3246. https://doi.org/10.1158/1078-0432.ccr-17-3179 CrossRefPubMedGoogle Scholar
- 64.Boddu P, Kantarjian H, Ravandi F, Daver N (2017) Emerging molecular and immune therapies in acute myeloid leukemia. Ame J Hematol/Oncol 13(4):12Google Scholar
- 65.Stein EM, Walter RB, Erba HP et al (2017) A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33 positive acute myeloid leukemia (AML). Blood. https://doi.org/10.1182/blood-2017-06-789800 CrossRefGoogle Scholar
- 66.Kovtun Y, Noordhuis P, Whiteman KR, Watkins K, Jones GE, Harvey L, Lai KC, Portwood S, Adams S, Sloss CM, Schuurhuis GJ, Ossenkoppele G, Wang ES, Pinkas J (2018) IMGN779, a novel CD33-targeting antibody-drug conjugate with DNA-alkylating activity, exhibits potent antitumor activity in models of AML. Mol Cancer Ther 17(6):1271–1279. https://doi.org/10.1158/1535-7163.mct-17-1077 CrossRefPubMedGoogle Scholar
- 67.Friedrich M, Henn A, Raum T, Bajtus M, Matthes K, Hendrich L, Wahl J, Hoffmann P, Kischel R, Kvesic M, Slootstra JW, Baeuerle PA, Kufer P, Rattel B (2014) Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther 13(6):1549–1557. https://doi.org/10.1158/1535-7163.mct-13-0956 CrossRefPubMedGoogle Scholar
- 68.Gbolahan OB, Zeidan AM, Stahl M et al (2017) Immunotherapeutic concepts to target acute myeloid leukemia: focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment. Int J Mol Sci 18(8)CrossRefGoogle Scholar
- 69.Testa U, Pelosi E, Frankel A (2014) CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res 2(1):4. https://doi.org/10.1186/2050-7771-2-4 CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Adams S, Wilhelm A, Harvey L et al (2016) IMGN632: a CD123-targeting antibody-drug conjugate (ADC) with a novel DNA-alkylating payload, is highly active and prolongs survival in acute myeloid leukemia (AML) Xenograft Models. Blood 128(22):2832–2832CrossRefGoogle Scholar
- 71.Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M (2017) Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol 10:142CrossRefGoogle Scholar
- 72.Li F, Sutherland MK, Yu C, Walter RB, Westendorf L, Valliere-Douglass J, Pan L, Cronkite A, Sussman D, Klussman K, Ulrich M, Anderson ME, Stone IJ, Zeng W, Jonas M, Lewis TS, Goswami M, Wang SA, Senter PD, Law CL, Feldman EJ, Benjamin DR (2018) Characterization of SGN-CD123A, a potent CD123-directed antibody-drug conjugate for acute myeloid leukemia. Mol Cancer Ther 17(2):554–564. https://doi.org/10.1158/1535-7163.mct-17-0742 CrossRefPubMedGoogle Scholar
- 73.Godwin JE (2017) Preliminary results of a phase 1 study of flotetuzumab, a CD123 x CD3 bispecific DART protein, in patients with relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Paper presented at the 59th Annual Meeting of the American Society of Hematology (ASH), AtlantaGoogle Scholar
- 74.Isidori A, Loscocco F, Ciciarello M, Corradi G, Lecciso M, Ocadlikova D, Parisi S, Salvestrini V, Amadori S, Visani G, Curti A (2018) Immunosenescence and immunotherapy in elderly acute myeloid leukemia patients: time for a biology-driven approach. Cancers (Basel) 10(7). https://doi.org/10.3390/cancers10070211 CrossRefGoogle Scholar
- 75.Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney S, Yun GH, Fautsch SK, McKenna D, le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave P (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057. https://doi.org/10.1182/blood-2004-07-2974 CrossRefPubMedGoogle Scholar
- 76.Orti G, Barba P, Fox L, Salamero O, Bosch F, Valcarcel D (2017) Donor lymphocyte infusions in AML and MDS: enhancing the graft-versus-leukemia effect. Exp Hematol 48:1–11. https://doi.org/10.1016/j.exphem.2016.12.004 CrossRefPubMedGoogle Scholar
- 77.Budde L, Song J, Kim Y, et al. Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial. Abstract #811. In: ASH Annual Meeting, Atlanta, GA, December 11 2017.Google Scholar
- 78.Jiang YP, Liu BY, Zheng Q, Panuganti S, Chen R, Zhu J, Mishra M, Huang J, Dao-Pick T, Roy S, Zhao X, Lin J, Banik G, Hsi ED, Mandalam R, Junutula JR (2018) CLT030, a leukemic stem cell–targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia. Blood Adv 2(14):1738–1749. https://doi.org/10.1182/bloodadvances.2018020107 CrossRefPubMedPubMedCentralGoogle Scholar
- 79.Ram R, Gatt M, Merkel D, Helman I, Inbar T, Nagler A, Avivi I, Ofran Y (2017) Second line azacitidine for elderly or infirmed patients with acute myeloid leukemia (AML) not eligible for allogeneic hematopoietic cell transplantation-a retrospective national multicenter study. Ann Hematol 96(4):575–579. https://doi.org/10.1007/s00277-016-2914-5 CrossRefPubMedGoogle Scholar
- 80.Khan N, Hantel A, Knoebel RW et al (2017) Efficacy of single-agent decitabine in relapsed and refractory acute myeloid leukemia. Leuk Lymphoma 58(9):1–7. https://doi.org/10.1080/10428194.2017.1289524 CrossRefPubMedGoogle Scholar
- 81.Daver N, Kantarjian HM, Roboz GJ et al (2016) Long term survival and clinical complete responses of various prognostic subgroups in 103 relapsed/refractory acute myeloid leukemia (r/r AML) patients treated with guadecitabine (SGI-110) in phase 2 studies. Blood 128(22):904–904CrossRefGoogle Scholar
- 82.Coude MM, Braun T, Berrou J et al (2015) BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget 6(19):17698–17712. https://doi.org/10.18632/oncotarget.4131 CrossRefPubMedPubMedCentralGoogle Scholar
- 83.Braun T, Gardin C (2017) Investigational BET bromodomain protein inhibitors in early stage clinical trials for acute myelogenous leukemia (AML). Expert Opin Investig Drugs 26(7):803–811. https://doi.org/10.1080/13543784.2017.1335711 CrossRefPubMedGoogle Scholar
- 84.Somervaille T, Salamero O, Montesinos P et al (2016) Safety, phamacokinetics (PK), pharmacodynamics (PD) and preliminary activity in acute leukemia of Ory-1001, a first-in-class inhibitor of lysine-specific histone demethylase 1A (LSD1/KDM1A): initial results from a first-in-human phase 1 study. Blood 128(22):4060–4060CrossRefGoogle Scholar
- 85.Shafer D, Grant S (2016) Update on rational targeted therapy in AML. Blood Rev 30(4):275–283. https://doi.org/10.1016/j.blre.2016.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
- 86.Schlenk RF, Krauter J, Raffoux E, Kreuzer KA, Schaich M, Noens L, Pabst T, Vusirikala M, Bouscary D, Spencer A, Candoni A, Gil JS, Berkowitz N, Weber HJ, Ottmann O (2018) Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: results from two clinical trials. Haematologica 103(1):e25–e28CrossRefGoogle Scholar
- 87.Bug G, Burchert A, Wagner EM, Kröger N, Berg T, Güller S, Metzelder SK, Wolf A, Hünecke S, Bader P, Schetelig J, Serve H, Ottmann OG (2017) Phase I/II study of the deacetylase inhibitor panobinostat after allogeneic stem cell transplantation in patients with high-risk MDS or AML (PANOBEST trial). Leukemia 31:2523–2525. https://doi.org/10.1038/leu.2017.242 CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Stahl M, Zeidan AM (2017) Hypomethylating agents in combination with histone deacetylase inhibitors in higher risk myelodysplastic syndromes: is there a light at the end of the tunnel? Cancer 123(6):911–914. https://doi.org/10.1002/cncr.30532 CrossRefPubMedGoogle Scholar
- 89.Mims AS, Klisovic RB, Garzon R et al (2016) A novel regimen for acute myeloid leukemia with MLL partial tandem duplication: results of a phase 1 study NCI 8485. Blood 128(22):900–900CrossRefGoogle Scholar
- 90.Stein EM, Garcia-Manero G, Rizzieri DA et al (2015) A phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in adults with relapsed or refractory leukemia: safety, clinical activity, exposure and target inhibition. Blood 126(23):2547–2547CrossRefGoogle Scholar
- 91.Schlenk RF, Muller-Tidow C, Benner A, Kieser M (2017) Relapsed/refractory acute myeloid leukemia: any progress? Curr Opin Oncol 29(6):467–473. https://doi.org/10.1097/cco.0000000000000404 CrossRefPubMedGoogle Scholar
- 92.DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, Swords R, Collins RH, Mannis GN, Pollyea DA, Donnellan W, Fathi AT, Pigneux A, Erba HP, Prince GT, Stein AS, Uy GL, Foran JM, Traer E, Stuart RK, Arellano ML, Slack JL, Sekeres MA, Willekens C, Choe S, Wang H, Zhang V, Yen KE, Kapsalis SM, Yang H, Dai D, Fan B, Goldwasser M, Liu H, Agresta S, Wu B, Attar EC, Tallman MS, Stone RM, Kantarjian HM (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398. https://doi.org/10.1056/NEJMoa1716984 CrossRefPubMedGoogle Scholar
- 93.Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, Stone RM, DeAngelo D, Levine RL, Flinn IW, Kantarjian HM, Collins R, Patel MR, Frankel AE, Stein A, Sekeres MA, Swords RT, Medeiros BC, Willekens C, Vyas P, Tosolini A, Xu Q, Knight RD, Yen KE, Agresta S, de Botton S, Tallman MS (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130(6):722–731. https://doi.org/10.1182/blood-2017-04-779405 CrossRefPubMedPubMedCentralGoogle Scholar
- 94.Karp JE, Smith BD, Levis MJ, Gore SD, Greer J, Hattenburg C, Briel J, Jones RJ, Wright JJ, Colevas AD (2007) Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia. Clin Cancer Res 13(15 Pt 1):4467–4473. https://doi.org/10.1158/1078-0432.ccr-07-0381 CrossRefPubMedGoogle Scholar
- 95.Fathi AT, Karp JE (2009) New agents in acute myeloid leukemia: beyond cytarabine and anthracyclines. Curr Oncol Rep 11(5):346–352CrossRefGoogle Scholar
- 96.LaCerte C, Ivaturi V, Gobburu J, Greer JM, Doyle LA, Wright JJ, Karp JE, Rudek MA (2017) Exposure-response analysis of alvocidib (flavopiridol) treatment by bolus or hybrid administration in newly diagnosed or relapsed/refractory acute leukemia patients. Clin Cancer Res 23(14):3592–3600. https://doi.org/10.1158/1078-0432.ccr-16-2629 CrossRefPubMedPubMedCentralGoogle Scholar
- 97.Karp JE, Ross DD, Yang W, Tidwell ML, Wei Y, Greer J, Mann DL, Nakanishi T, Wright JJ, Colevas AD (2003) Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin Cancer Res 9(1):307–315PubMedGoogle Scholar
- 98.Zeidner JF, Karp JE (2015) Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk Res 39(12):1312–1318. https://doi.org/10.1016/j.leukres.2015.10.010 CrossRefPubMedGoogle Scholar
- 99.Zeidner JF, Vigil CE, Lin T et al. Phase II study incorporating a novel BH3-profiling biomarker approach of alvocidib followed by cytarabine and mitoxantrone in relapsed/refractory acute myeloid leukemia (AML). Poster PF243. In: 23rd Annual Congress of the European Hematology Association, Stockholm, Sweden, June 15 2018.Google Scholar
- 100.Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M (2005) MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106(9):3150–3159CrossRefGoogle Scholar
- 101.Reis B, Jukofsky L, Chen G, Martinelli G, Zhong H, So WV, Dickinson MJ, Drummond M, Assouline S, Hashemyan M, Theron M, Blotner S, Lee JH, Kasner M, Yoon SS, Rueger R, Seiter K, Middleton SA, Kelly KR, Vey N, Yee K, Nichols G, Chen LC, Pierceall WE (2016) Acute myeloid leukemia patients’ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica 101(5):e185–e188CrossRefGoogle Scholar
- 102.Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, McKeegan E, Salem AH, Zhu M, Ricker JL, Blum W, DiNardo C, Kadia T, Dunbar M, Kirby R, Falotico N, Leverson J, Humerickhouse R, Mabry M, Stone R, Kantarjian H, Letai A (2016) Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov 6(10):1106–1117. https://doi.org/10.1158/2159-8290.cd-16-0313 CrossRefPubMedPubMedCentralGoogle Scholar
- 103.DiNardo CD, Rausch CR, Benton C, Kadia T, Jain N, Pemmaraju N, Daver N, Covert W, Marx KR, Mace M, Jabbour E, Cortes J, Garcia-Manero G, Ravandi F, Bhalla KN, Kantarjian H, Konopleva M (2018) Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol 93(3):401–407. https://doi.org/10.1002/ajh.25000 CrossRefPubMedGoogle Scholar
- 104.DiNardo C, Albitar M, Kadia T et al (2018) Venetoclax in combination with FLAG-IDA chemotherapy (FLAG-V-I) for fit, relapsed/refractory AML patients: interim results of a phase 1b/2 dose escalation and expansion study paper presented at the American Society of Hematology (ASH) Annual Meeting. San Diego, CaliforniaGoogle Scholar
- 105.Bogenberger J, Whatcott C, Hansen N et al (2017) Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget 8(63):107206–107222. https://doi.org/10.18632/oncotarget.22284 CrossRefPubMedPubMedCentralGoogle Scholar
- 106.Caenepeel SR, Belmontes B, Sun J et al (2017) Abstract 2027: preclinical evaluation of AMG 176, a novel, potent and selective Mcl-1 inhibitor with robust anti-tumor activity in Mcl-1 dependent cancer models. Cancer Res 77(13 Supplement):2027–2027. https://doi.org/10.1158/1538-7445.am2017-2027 CrossRefGoogle Scholar
- 107.Garzón R, Savona M, Baz R et al (2017) A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood 129(24):3165–3174. https://doi.org/10.1182/blood-2016-11-750158 CrossRefPubMedPubMedCentralGoogle Scholar
- 108.Wang AY, Weiner H, Green M, Chang H, Fulton N, Larson RA, Odenike O, Artz AS, Bishop MR, Godley LA, Thirman MJ, Kosuri S, Churpek JE, Curran E, Pettit K, Stock W, Liu H (2018) A phase I study of selinexor in combination with high-dose cytarabine and mitoxantrone for remission induction in patients with acute myeloid leukemia. J Hematol Oncol 11(1):4. https://doi.org/10.1186/s13045-017-0550-8 CrossRefPubMedPubMedCentralGoogle Scholar
- 109.Ravandi F, Ritchie EK, Sayar H, Lancet JE, Craig MD, Vey N, Strickland SA, Schiller GJ, Jabbour E, Erba HP, Pigneux A, Horst HA, Recher C, Klimek VM, Cortes J, Roboz GJ, Odenike O, Thomas X, Havelange V, Maertens J, Derigs HG, Heuser M, Damon L, Powell BL, Gaidano G, Carella AM, Wei A, Hogge D, Craig AR, Fox JA, Ward R, Smith JA, Acton G, Mehta C, Stuart RK, Kantarjian HM (2015) Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol 16(9):1025–1036. https://doi.org/10.1016/s1470-2045(15)00201-6 CrossRefPubMedPubMedCentralGoogle Scholar
- 110.Ravandi F, Ritchie EK, Sayar H et al (2016) Durable overall survival benefit in patients ≥60 years with relapsed or refractory AML treated with vosaroxin/cytarabine vs. placebo/cytarabine: updated results from the Valor Trial. Blood 128(22):903–903CrossRefGoogle Scholar
- 111.Tardi P, Johnstone S, Harasym N, Xie S, Harasym T, Zisman N, Harvie P, Bermudes D, Mayer L (2009) In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33(1):129–139. https://doi.org/10.1016/j.leukres.2008.06.028 CrossRefPubMedGoogle Scholar
- 112.Saygin C, Carraway HE (2017) Emerging therapies for acute myeloid leukemia. J Hematol Oncol 10(1):93. https://doi.org/10.1186/s13045-017-0463-6 CrossRefPubMedPubMedCentralGoogle Scholar