Advertisement

Annals of Hematology

, Volume 98, Issue 11, pp 2621–2623 | Cite as

ASXL2 mutation is recurrent in non-de novo AML1-ETO-negative acute myeloid leukemia

  • Xiang Zhang
  • Jie JinEmail author
  • Wenjuan YuEmail author
Letter to the Editor
  • 80 Downloads

Dear Editor,

ASXL1, ASXL2, and ASXL3 compose the additional sex comb-like family, and they function as epigenetic regulators through recruitment of polycomb group repressor complexes (PRC). ASXL2 acts as a tumor suppressor in hematopoiesis [1, 2, 3]. ASXL2 deletion in hematopoietic stem cells (HSCs) leads to the development of myelodysplastic syndrome (MDS)-like disease or myeloid leukemia, and its mechanism is related to H3K27ac and H3K4me1/2 dysregulation [2]. ASXL1 mutation can be found in multiple spectra of myeloid malignancies, including various subtypes of acute myeloid leukemia (AML) [4]. Unlike ASXL1 mutation, ASXL2 mutation is largely restricted to AML1-ETO positive AML [5, 6, 7, 8, 9, 10]. It has been demonstrated that ASXL2 target genes strongly overlap with those of RUNX1 and AML1-ETO, and the loss of ASXL2 promotes leukemogenesis via increasing chromatin accessibility at putative enhancers of key leukemogenic loci [1]. However, the status and frequency of ASXL2mutation...

Notes

Acknowledgments

We thank all members of the Zhejiang University Institute of Hematology as well as the Department of Laboratory Medicine of the First Affiliated Hospital to the Zhejiang University College of Medicine for technical support to diagnosis.

Author contributions

X. Z., J.J., and W.-J. Y. collected and analyzed the clinical data and made the summary. X. Z. designed this study and wrote this manuscript. J.J. and W.-J. Y. revised this manuscript. All authors approved the manuscript.

Funding information

This work was supported by the National Natural Science Foundation of China (81670124, 81800199).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Micol JB, Pastore A, Inoue D, Duployez N, Kim E, Lee SC, Durham BH, Chung YR, Cho H, Zhang XJ, Yoshimi A, Krivtsov A, Koche R, Solary E, Sinha A, Preudhomme C, Abdel-Wahab O (2017) ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nat Commun 8:15429.  https://doi.org/10.1038/ncomms15429 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li J, He F, Zhang P, Chen S, Shi H, Sun Y, Guo Y, Yang H, Man N, Greenblatt S, Li Z, Guo Z, Zhou Y, Wang L, Morey L, Williams S, Chen X, Wang QT, Nimer SD, Yu P, Wang QF, Xu M, Yang FC (2017) Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun 8:15456.  https://doi.org/10.1038/ncomms15456 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Madan V, Han L, Hattori N, Teoh WW, Mayakonda A, Sun QY, Ding LW, Binte Mohd Nordin H, Lim SL, Shyamsunder P, Dakle P, Sundaresan J, Doan NB, Sanada M, Sato-Otsubo A, Meggendorfer M, Yang H, Said JW, Ogawa S, Haferlach T, Liang DC, Shih LY, Nakamaki T, Wang QT, Koeffler HP (2018) ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion. Haematologica.  https://doi.org/10.3324/haematol.2018.189928 CrossRefGoogle Scholar
  4. 4.
    Hsu YC, Chiu YC, Lin CC, Kuo YY, Hou HA, Tzeng YS, Kao CJ, Chuang PH, Tseng MH, Hsiao TH, Chou WC, Tien HF (2017) The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J Hematol Oncol 10(1):139.  https://doi.org/10.1186/s13045-017-0508-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Micol JB, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O, Lacombe C, Lapillonne H, Etancelin P, Figeac M, Renneville A, Castaigne S, Leverger G, Ifrah N, Dombret H, Preudhomme C, Abdel-Wahab O, Jourdan E (2014) Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124(9):1445–1449.  https://doi.org/10.1182/blood-2014-04-571018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao JR, Walsh MP, Song G, Andersson AK, Dang J, Dong L, Liu Y, Huether R, Cai Z, Mulder H, Wu G, Edmonson M, Rusch M, Qu C, Li Y, Vadodaria B, Wang J, Hedlund E, Cao X, Yergeau D, Nakitandwe J, Pounds SB, Shurtleff S, Fulton RS, Fulton LL, Easton J, Parganas E, Pui CH, Rubnitz JE, Ding L, Mardis ER, Wilson RK, Gruber TA, Mullighan CG, Schlenk RF, Paschka P, Dohner K, Dohner H, Bullinger L, Zhang J, Klco JM, Downing JR (2016) The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 48(12):1551–1556.  https://doi.org/10.1038/ng.3709 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, Nagata Y, Chiba K, Tanaka H, Terui K, Kato M, Park MJ, Ohki K, Shimada A, Takita J, Tomizawa D, Kudo K, Arakawa H, Adachi S, Taga T, Tawa A, Ito E, Horibe K, Sanada M, Miyano S, Ogawa S, Hayashi Y (2016) Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol 175(3):476–489.  https://doi.org/10.1111/bjh.14247 CrossRefPubMedGoogle Scholar
  8. 8.
    Jahn N, Agrawal M, Bullinger L, Weber D, Corbacioglu A, Gaidzik VI, Schmalbrock L, Thol F, Heuser M, Krauter J, Gohring G, Kundgen A, Fiedler W, Wattad M, Held G, Kohne CH, Horst HA, Lubbert M, Ganser A, Schlenk RF, Dohner H, Dohner K, Paschka P (2017) Incidence and prognostic impact of ASXL2 mutations in adult acute myeloid leukemia patients with t(8;21)(q22;q22): a study of the German-Austrian AML Study Group. Leukemia 31(4):1012–1015.  https://doi.org/10.1038/leu.2017.18 CrossRefPubMedGoogle Scholar
  9. 9.
    Yamato G, Shiba N, Yoshida K, Shiraishi Y, Hara Y, Ohki K, Okubo J, Okuno H, Chiba K, Tanaka H, Kinoshita A, Moritake H, Kiyokawa N, Tomizawa D, Park MJ, Sotomatsu M, Taga T, Adachi S, Tawa A, Horibe K, Arakawa H, Miyano S, Ogawa S, Hayashi Y (2017) ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis. Genes Chromosom Cancer 56(5):382–393.  https://doi.org/10.1002/gcc.22443 CrossRefPubMedGoogle Scholar
  10. 10.
    Kawashima N, Akashi A, Nagata Y, Kihara R, Ishikawa Y, Asou N, Ohtake S, Miyawaki S, Sakura T, Ozawa Y, Usui N, Kanamori H, Ito Y, Imai K, Suehiro Y, Kitamura K, Sakaida E, Takeshita A, Suzushima H, Naoe T, Matsumura I, Miyazaki Y, Ogawa S, Kiyoi H, Japan Adult Leukemia Study G (2019) Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study. Ann Hematol 98(1):83–91.  https://doi.org/10.1007/s00277-018-3492-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hematology, The First Affiliated HospitalZhejiang University College of MedicineZhejiangChina
  2. 2.Institute of HematologyZhejiang UniversityZhejiangChina
  3. 3.Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, ZhejiangZhejiangChina

Personalised recommendations