The prognostic significance of Wilms’ tumor gene 1 (WT1) expression at diagnosis in adults with Ph-negative B cell precursor acute lymphoblastic leukemia

  • Ya-Zhen Qin
  • Qian JiangEmail author
  • Lan-Ping Xu
  • Hao Jiang
  • Yu Wang
  • Xiao-Su Zhao
  • Zong-Ru Li
  • Yue-Yun Lai
  • Yan-Rong Liu
  • Xiao-Hui Zhang
  • Kai-Yan Liu
  • Xiao-Jun Huang
Original Article


The prognostic significance of Wilms’ tumor gene 1 (WT1) expression at diagnosis in adults with B cell precursor acute lymphoblastic leukemia (BCP-ALL) remains poorly understood. A total of 257 adults with Ph-negative BCP-ALL who were consecutively diagnosed and received at least 1 course of induction therapy at our institute were retrospectively analyzed. The WT1 expression patterns were significantly different among the molecularly and cytogenetically defined groups (E2A-PBX1, TEL-AML1, and MLL rearrangements; high hyperdiploidy and B-other). By considering the WT1 expression pattern and the relapse status, 2 cutoff values, 1.8% and 7.2%, were arbitrarily selected to place patients into WT1-low, WT1-inter, and WT1-high groups. In the B-other patients who achieved complete remission (CR), WT1-low and WT1-high patients had similar 3-year relapse-free survival (RFS), disease-free survival (DFS), and overall survival (OS) rates, which were all significantly lower than those of WT1-inter patients. The combined WT1-low/high expression group (n = 132) had significantly lower 3-year RFS, DFS, and OS rates compared with the WT1-inter group (n = 63) of B-other patients (RFS and DFS all P < 0.0001; OS P = 0.0018 and 0.0008). WT1 low/high expression as well as treating with chemotherapy only was independent poor prognostic factors for RFS, DFS, and OS in the B-other patients who achieved CR. Therefore, the molecularly and cytogenetically defined adult Ph-negative BCP-ALL groups have characteristic WT1 expression patterns, and WT1 low/high expression at diagnosis predicts poor outcome in B-other patients.


B cell precursor acute lymphoblastic leukemia Ph-negative WT1 transcript levels At diagnosis Prognosis 


Funding information

This work was supported by the National Natural Science Foundation of China (81870125, 81770161, and 81570130) and Scientific Research Foundation for Capital Medicine Development (2016-1-4082).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the Peking University People’s Hospital.

Informed consent

For this retrospective study, formal content is not required.

Supplementary material

277_2019_3789_MOESM1_ESM.docx (531 kb)
ESM 1 (DOCX 530 kb)


  1. 1.
    Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, Ravandi F, Verstovsek S, Jorgensen JL, Bueso-Ramos C, Andreeff M, Pierce S, Garris R, Keating MJ, Cortes J, Kantarjian HM (2010) Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol 28(24):3880–3889CrossRefGoogle Scholar
  2. 2.
    Ribera JM, Oriol A, Morgades M, Montesinos P, Sarrà J, González-Campos J, Brunet S, Tormo M, Fernández-Abellán P, Guàrdia R, Bernal MT, Esteve J, Barba P, Moreno MJ, Bermúdez A, Cladera A, Escoda L, García-Boyero R, Del Potro E, Bergua J, Amigo ML, Grande C, Rabuñal MJ, Hernández-Rivas JM, Feliu E (2014) Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol 32(15):1595–1604CrossRefGoogle Scholar
  3. 3.
    Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A, Kim EH, Hosen N, Murakami M, Fujioka T, Masuda T, Taniguchi Y, Nishida S, Oji Y, Oka Y, Sugiyama H (2003) The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 101(5):1698–1704CrossRefGoogle Scholar
  4. 4.
    Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV, Gottardi E, Fava M, Schnittger S, Weiss T, Izzo B, Nomdedeu J, van der Heijden A, van der Reijden BA, Jansen JH, van der Velden VH, Ommen H, Preudhomme C, Saglio G, Grimwade D (2009) Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol 27(31):5195–5201CrossRefGoogle Scholar
  5. 5.
    Nomdedéu JF, Esquirol A, Carricondo M, Pratcorona M, Hoyos M, Garrido A, Rubio M, Bussaglia E, García-Cadenas I, Estivill C, Brunet S, Martino R, Sierra J (2018) Bone marrow WT1 levels in allogeneic hematopoietic stem cell transplantation for acute myelogenous leukemia and myelodysplasia: clinically relevant time points and 100 copies threshold value. Biol Blood Marrow Transplant 24(1):55–63CrossRefGoogle Scholar
  6. 6.
    Nomdedéu JF, Hoyos M, Carricondo M, Bussaglia E, Estivill C, Esteve J, Tormo M, Duarte R, Salamero O, de Llano MP, García A, Bargay J, Heras I, Martí-Tutusaus JM, Llorente A, Ribera JM, Gallardo D, Aventin A, Brunet S, Sierra J, CETLAM Group (2013) Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia 27(11):2157–2164CrossRefGoogle Scholar
  7. 7.
    Yi-Ning Y, Xiao-rui W, Chu-xian Z, Chun W, You-wen Q (2015) Prognostic significance of diagnosed WT1 level in acute myeloid leukemia: a meta-analysis. Ann Hematol 94(6):929–938CrossRefGoogle Scholar
  8. 8.
    Chiusa L, Francia di Celle P, Campisi P, Ceretto C, Marmont F, Pich A (2006) Prognostic value of quantitative analysis of WT1 gene transcripts in adult acute lymphoblastic leukemia. Haematologica 91(2):270–271Google Scholar
  9. 9.
    Busse A, Gökbuget N, Siehl JM, Hoelzer D, Schwartz S, Rietz A, Thiel E, Keilholz U (2009) Wilms’ tumor gene 1 (WT1) expression in subtypes of acute lymphoblastic leukemia (ALL) of adults and impact on clinical outcome. Ann Hematol 88(12):1199–1205CrossRefGoogle Scholar
  10. 10.
    Yang S, Wang J, Zhao T, Jia J, Zhu H, Jiang H, Lu J, Jiang B, Shi H, Liu Y, Lai Y, Xu L, Huang X, Jiang Q (2017) CD20 expression sub-stratifies standard-risk patients with B cell precursor acute lymphoblastic leukemia. Oncotarget 8(62):105397–105406Google Scholar
  11. 11.
    Yan CH, Liu DH, Liu KY, Xu LP, Liu YR, Chen H, Han W, Wang Y, Qin YZ, Huang XJ (2012) Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood 119(14):3256–3262CrossRefGoogle Scholar
  12. 12.
    Qin Y, Zhu H, Jiang B, Li J, Lu X, Li L, Ruan G, Liu Y, Chen S, Huang X (2009) Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leuk Res 33(3):384–390CrossRefGoogle Scholar
  13. 13.
    Qin YZ, Zhu HH, Liu YR, Wang YZ, Shi HX, Lai YY, Xu LP, Liu DH, Jiang Q, Li LD, Jiang B, Liu KY, Huang XJ (2013) PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma 54(7):1442–1449CrossRefGoogle Scholar
  14. 14.
    Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, Delabesse E, Macintyre E, Gottardi E, Saglio G, Watzinger F, Lion T, van Dongen JJ, Hokland P, Gabert J (2003) Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia 17(12):2474–2486CrossRefGoogle Scholar
  15. 15.
    Caye A, Beldjord K, Mass-Malo K, Drunat S, Soulier J, Gandemer V, Baruchel A, Bertrand Y, Cavé H, Clappier E (2013) Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 98(4):597–601CrossRefGoogle Scholar
  16. 16.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, Van Zutven LJ, Beverloo HB, Van der Spek PJ, Escherich G, Horstmann MA, Janka-Schaub GE, Kamps WA, Evans WE, Pieters R (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2):125–134CrossRefGoogle Scholar
  17. 17.
    van der Veer A, Waanders E, Pieters R, Willemse ME, Van Reijmersdal SV, Russell LJ, Harrison CJ, Evans WE, van der Velden VH, Hoogerbrugge PM, Van Leeuwen F, Escherich G, Horstmann MA, Mohammadi Khankahdani L, Rizopoulos D, De Groot-Kruseman HA, Sonneveld E, Kuiper RP, Den Boer ML (2013) Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 122(15):2622–2629CrossRefGoogle Scholar
  18. 18.
    Foa R, Vitale A, Mancini M, Cuneo A, Mecucci C, Elia L, Lombardo R, Saglio G, Torelli G, Annino L, Specchia G, Damasio E, Recchia A, Di Raimondo F, Morra E, Volpe E, Tafuri A, Fazi P, Hunger SP, Mandelli F (2003) E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol 120(3):484–487CrossRefGoogle Scholar
  19. 19.
    Mancini M, Scappaticci D, Cimino G, Nanni M, Derme V, Elia L, Tafuri A, Vignetti M, Vitale A, Cuneo A, Castoldi G, Saglio G, Pane F, Mecucci C, Camera A, Specchia G, Tedeschi A, Di Raimondo F, Fioritoni G, Fabbiano F, Marmont F, Ferrara F, Cascavilla N, Todeschini G, Nobile F, Kropp MG, Leoni P, Tabilio A, Luppi M, Annino L, Mandelli F, Foà R (2005) A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 105(9):3434–3441CrossRefGoogle Scholar
  20. 20.
    Gleissner B, Goekbuget N, Rieder H, Arnold R, Schwartz S, Diedrich H, Schoch C, Heinze B, Fonatsch C, Bartram CR, Hoelzer D, Thiel E, GMALL Study Group (2005) CD10- pre-B acute lymphoblastic leukemia (ALL) is a distinct high-risk subgroup of adult ALL associated with a high frequency of MLL aberrations: results of the German Multicenter Trials for Adult ALL (GMALL). Blood 106(13):4054–4056CrossRefGoogle Scholar
  21. 21.
    Issa GC, Kantarjian HM, Yin CC, Qiao W, Ravandi F, Thomas D, Short NJ, Sasaki K, Garcia-Manero G, Kadia TM, Cortes JE, Daver N, Borthakur G, Jain N, Konopleva M, Khouri I, Kebriaei P, Champlin RE, Pierce S, O'Brien SM, Jabbour E (2017) Prognostic impact of pretreatment cytogenetics in adult Philadelphia chromosome-negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer 123(3):459–467CrossRefGoogle Scholar
  22. 22.
    Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, Vance GH, Cherry AM, Higgins RR, Fielding AK, Foroni L, Paietta E, Tallman MS, Litzow MR, Wiernik PH, Rowe JM, Goldstone AH, Dewald GW, Adult Leukaemia Working Party, Medical Research Council/National Cancer Research Institute (2007) Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology (ECOG) 2993 trial. Blood 109(8):3189–3197CrossRefGoogle Scholar
  23. 23.
    Boublikova L, Kalinova M, Ryan J, Quinn F, O'Marcaigh A, Smith O, Browne P, Stary J, McCann SR, Trka J, Lawler M (2006) Wilms’ tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 20(2):254–263CrossRefGoogle Scholar
  24. 24.
    Heesch S, Goekbuget N, Stroux A, Tanchez JO, Schlee C, Burmeister T, Schwartz S, Blau O, Keilholz U, Busse A, Hoelzer D, Thiel E, Hofmann WK, Baldus CD (2010) Prognostic implications of mutations and expression of the Wilms tumor 1 (WT1) gene in adult acute T-lymphoblastic leukemia. Haematologica 95(6):942–949CrossRefGoogle Scholar
  25. 25.
    Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108(1):28–37CrossRefGoogle Scholar
  26. 26.
    Pfeifer H, Cazzaniga G, van der Velden VHJ, Cayuela JM, Schäfer B, Spinelli O, Akiki S, Avigad S, Bendit I, Borg K, Cavé H, Elia L, Reshmi SC, Gerrard G, Hayette S, Hermanson M, Juh A, Jurcek T, Chillón MC, Homburg C, Martinelli G, Kairisto V, Lange T, Lion T, Mueller MC, Pane F, Rai L, Damm-Welk C, Sacha T, Schnittger S, Touloumenidou T, Valerhaugen H, Vandenberghe P, Zuna J, Serve H, Herrmann E, Markovic S, Dongen JJMV, Ottmann OG (2019) Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia 33(8):1910–1922CrossRefGoogle Scholar
  27. 27.
    Willasch AM, Gruhn B, Coliva T, Kalinova M, Schneider G, Kreyenberg H, Steinbach D, Weber G, Hollink IH, Zwaan CM, Biondi A, van der Velden VH, Reinhardt D, Cazzaniga G, Bader P, Trka J, European Study Group on WT1 Expression in Childhood AML (2009) Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia 23(8):1472–1479CrossRefGoogle Scholar
  28. 28.
    Yang L, Han Y, Suarez Saiz F, Minden MD (2007) A tumor suppressor and oncogene: the WT1 story. Leukemia 21(5):868–876CrossRefGoogle Scholar
  29. 29.
    Marlton P (2014) The many facets of WT1 in acute myeloid leukemia: clarity remains elusive. Leuk Lymphoma 55(2):235–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ya-Zhen Qin
    • 1
  • Qian Jiang
    • 1
    • 2
    Email author
  • Lan-Ping Xu
    • 1
  • Hao Jiang
    • 1
  • Yu Wang
    • 1
  • Xiao-Su Zhao
    • 1
  • Zong-Ru Li
    • 1
  • Yue-Yun Lai
    • 1
  • Yan-Rong Liu
    • 1
  • Xiao-Hui Zhang
    • 1
  • Kai-Yan Liu
    • 1
  • Xiao-Jun Huang
    • 1
    • 3
  1. 1.Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic DiseaseBeijingChina
  2. 2.Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
  3. 3.Peking-Tsinghua Center for Life SciencesBeijingChina

Personalised recommendations