Advertisement

Annals of Hematology

, Volume 98, Issue 12, pp 2673–2681 | Cite as

Genetic modulators of fetal hemoglobin expression and ischemic stroke occurrence in African descendant children with sickle cell anemia

  • Marta Nicolau
  • Sofia Vargas
  • Marisa Silva
  • Andreia Coelho
  • Emanuel Ferreira
  • Joana Mendonça
  • Luís Vieira
  • Paula Kjöllerström
  • Raquel Maia
  • Rita Silva
  • Alexandra Dias
  • Teresa Ferreira
  • Anabela Morais
  • Isabel Mota Soares
  • João Lavinha
  • Paula FaustinoEmail author
Original Article
  • 177 Downloads

Abstract

Sickle cell anemia (SCA) is an autosomal recessive monogenic disease with significant clinical variability. Cerebrovascular disease, particularly ischemic stroke, is one of the most severe complications of SCA in children. This study aimed to investigate the influence of genetic variants on the levels of fetal hemoglobin (Hb F) and biochemical parameters related with chronic hemolysis, as well as on ischemic stroke risk, in ninety-one unrelated SCA patients, children of sub-Saharan progenitors. Our results show that a higher Hb F level has an inverse relationship with the occurrence of stroke, since the group of patients who suffered stroke presents a significantly lower mean Hb F level (5.34 ± 4.57% versus 9.36 ± 6.48%; p = 0.024). Furthermore, the co-inheritance of alpha-thalassemia improves the chronic hemolytic pattern, evidenced by a decreased reticulocyte count (8.61 ± 3.58% versus 12.85 ± 4.71%; p < 0.001). In addition, our findings have confirmed the importance of HBG2 and BCL11A loci in the regulation of Hb F expression in sub-Saharan African SCA patients, as rs7482144_A, rs11886868_C, and rs4671393_A alleles are significantly associated with a considerable increase in Hb F levels (p = 0.019, p = 0.026, and p = 0.028, respectively). Concerning KLF1, twelve different variants were identified, two of them novel. Seventy-three patients (80.2%) presented at least one variant in this gene. However, no correlation was observed between the presence of these variants and Hb F level, severity of hemolysis, or stroke occurrence, which is consistent with their in silico-predicted minor functional consequences. Thus, we conclude that the prevalence of functional KLF1 variants in a sub-Saharan African background does not seem to be relevant to SCA clinical modulation.

Keywords

Sickle cell anemia Fetal hemoglobin Cerebrovascular disease KLF1 gene Genetic risk factors 

Notes

Acknowledgments

The authors wish to thank the SCA patients and their parents for their participation in this study.

Authors’ contribution

MN, SV, MS, AC, and EF performed the molecular work and analyzed results; SV and AC also collected data and populating database; JM and LV performed NGS experiments and analyzed data; PK, RM, RS, AD, TF, AM, and IMS participated in clinical enrolling/work-up of patients. JL acquired funding and performed a critical revision of the manuscript. PF conceived and designed the experiments, supervised the molecular analysis, and drafted the manuscript. All authors (except AM) revised and approved the manuscript final version.

Funding information

This work was partially funded by Fundação para a Ciência e a Tecnologia (FCT) grant PIC/IC/83084/2007, ISAMB, and INSA project 2012DGH720. Additionally, it is a result of the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), FCT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all patients’ legal representatives for being included in the study.

References

  1. 1.
    Sebastiani P, Solovieff N, Hartley SW, Milton JN, Riva A, Dworkis DA et al (2010) Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study. Am J Haematol 85(1):29–35Google Scholar
  2. 2.
    Thein SL (2008) Genetic modifiers of the beta-hemoglobinopathies. Br J Haematol 141(3):357–366PubMedGoogle Scholar
  3. 3.
    Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease: life expectancy and risk factors for early death. N Engl J Med 330(23):1639–1644PubMedGoogle Scholar
  4. 4.
    Embury SE, Clark MR, Monroy G, Mohandas N (1984) Concurrent sickle cell anemia and alpha-thalassemia. Effect on pathological properties of sickle erythrocytes. J Clin Invest 73(1):116–123PubMedPubMedCentralGoogle Scholar
  5. 5.
    Rumaney MB, Bitoungui VJN, Vorster AA, Ramesar R, Kengne AP, Ngogang J, Wonkam A (2014) The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival. PLoS One 9(6):e100516PubMedPubMedCentralGoogle Scholar
  6. 6.
    Labie D, Dunda-Belkhodja O, Rouabhi F, Pagnier J, Ragusa A, Nagel RL (1985) The -158 site 5’ to the Gγ gene and Gγ expression. Blood 66(6):1463–1465PubMedGoogle Scholar
  7. 7.
    Lettre G, Sankaran VG, Bezerra MAC, Araújo AS, Uda M, Sanna S (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 105(33):11869–11874PubMedPubMedCentralGoogle Scholar
  8. 8.
    Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 105:1620–1625PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B et al (2008) Human fetal hemoglobin expression is regulated by the development stage specific repressor BCL11A. Science 322(5909):1839–1842PubMedGoogle Scholar
  10. 10.
    Thein SL, Menzel S, Lathrop M, Garner C (2009) Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 18(R2):R216–R223PubMedPubMedCentralGoogle Scholar
  11. 11.
    Creary LE, Ulug P, Menzel S, McKenzie CA, Hanchard NA, Taylor V et al (2009) Genetic variation on chromosome 6 influences F cells in healthy individuals of African descent and HbF levels in sickle cell patients. PLoS One 4(1):e4218PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wahlberg K, Jiang J, Rooks H, Jawaid K, Matsuda F, Yamaguchi M, Lathrop M, Thein SL, Best S (2009) The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood 114(6):1254–1262PubMedGoogle Scholar
  13. 13.
    Bieker JJ (2010) Putting a finger on the switch. Nat Genet 42(9):733–734PubMedPubMedCentralGoogle Scholar
  14. 14.
    Borg J, Patrinos GP, Felice AE, Philipsen E (2011) Erythroid phenotypes associated with KLF1 mutations. Haematologica 96(5):635–638PubMedPubMedCentralGoogle Scholar
  15. 15.
    Siatecka M, Bieker JJ (2011) The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 118(8):2044–2054PubMedPubMedCentralGoogle Scholar
  16. 16.
    Perkins A, Xu X, Higgs D, Patrinos GP, Arnaud L, Bieker JJ, Philipsen S, the KLF1 Consensus Worgroup (2016) Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 127(15):1856–1862PubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM (2010) KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet 42(9):742–774Google Scholar
  18. 18.
    Borg J, Papadopoulos P, Georgitsi M, Gutiérrez L, Grech G, Fanis P, Phylactides M, Verkerk AJMH, van der Spek PJ, Scerri CA, Cassar W, Galdies R, van IJcken W, Özgür Z, Gillemans N, Hou J, Bugeja M, Grosveld FG, von Lindern M, Felice AE, Patrinos GP, Philipsen S (2010) Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet 42(9):801–805PubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu D, Zhang X, Yu L, Cai R, Ma X, Zheng C (2014) KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of beta-thalassemia. Blood 124(5):803–811PubMedPubMedCentralGoogle Scholar
  20. 20.
    Tepakhan W, Yamsri S, Sanchaisuriya K, Fucharoen G, Xu X, Fucharoen S (2016) Nine known and five novel mutations in the erythroid transcription factor KLF1 gene and phenotypic expression of fetal hemoglobin in hemoglobin E disorder. Blood Cells Mol Dis 59:85–91PubMedGoogle Scholar
  21. 21.
    Khamphikham P, Sripichai O, Munkongdee T, Fucharoen S, Tongsima S, Smith DR (2018) Genetic variation of Krüppel-like factor 1 (KLF1) and fetal hemoglobin (HbF) levels in β0-thalassemia/HbE disease. Int J Hematol 107(3):297–310PubMedGoogle Scholar
  22. 22.
    Ngo D, Bae H, Steinberg MH, Sebastiani P, Solovieff N, Baldwin CT, Melista E, Safaya S, Farrer LA, al-Suliman AM, Albuali WH, al Bagshi MH, Naserullah Z, Akinsheye I, Gallagher P, Luo HY, Chui DHK, Farrell JJ, al-Ali AK, Alsultan A (2013) Fetal hemoglobin in sickle cell anemia: genetic studies of Arab-Indian haplotype. Blood Cells Mol Dis 51(1):22–26PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bae HT, Baldwin CT, Sebastiani P, Telen MJ, Ashley-Koch A, Garrett M, Hooper WC, Bean CJ, DeBaun MR, Arking DE, Bhatnagar P, Casella JF, Keefer JR, Barron-Casella E, Gordeuk V, Kato GJ, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Hoppe C, Gladwin MT, Zhang Y, Steinberg MH (2012) Meta-analysis of 2040 sickle cell anemia patients: BCL1A, and HBS1L-MYB are the major modifiers of Hb F in African Americans. Blood 120(9):1961–1962PubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu L, Pertsemlidis A, Ding LH, Story MD, Steinberg MH (2016) A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Exp Biol Med 241(7):706–718Google Scholar
  25. 25.
    Mtatiro SK, Singh T, Rooks H, Mgaya J, Mariki H, Soka D et al (2014) Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania. PLoS One 9(11):e111464PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gallienne AE, Dréau HM, Schuh A, Old JM, Henderson S (2012) Ten novel mutations in the erythroid transcription factor klf1 gene associated with increased fetal hemoglobin levels in adults. Haematologica 97(3):340–343PubMedPubMedCentralGoogle Scholar
  27. 27.
    Orkin SH, Kazazian HH, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJV (1982) Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphism in human β-globin gene cluster. Nature 296(5858):627–631PubMedGoogle Scholar
  28. 28.
    Dodé C, Krishnamoorthy R, Lamb J, Rochette J (1993) Rapid analysis of α3.7 thalassaemia and αααanti3.7 triplication by enzymatic amplification analysis. Br J Haematol 83(1):105–111PubMedGoogle Scholar
  29. 29.
    Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP (2017) Variant review with the Integrative Genomics Viewer. Cancer Res 77(21):e31–e34PubMedPubMedCentralGoogle Scholar
  30. 30.
    Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, Chui DHK, Steinberg MH (2011) Fetal hemoglobin in sickle cell anemia. Blood 118(1):19–27PubMedPubMedCentralGoogle Scholar
  31. 31.
    Adeodu OO, Akinlosotu MA, Adegoke SA, Saheed BA, Oseni SBA (2017) Fetal hemoglobin and disease severity in Nigerian children with sickle cell anemia. Mediterr J Hematol Infect Dis 9(1):e2017063PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mpalampa L, Ndugwa CM, Ddungu H, Idro R (2012) Fetal hemoglobin and disease severity in sickle cell anemia patients in Kampala Uganda. BMC Blood Disord 12:11PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mouélé R, Galactéros F, Feingold J (1999) Hemoglobin F (Hb F) levels in sickle-cell anemia patients homozygous for the Bantu haplotype. Eur J Haematol 63(2):136–137PubMedGoogle Scholar
  34. 34.
    Makani J, Menzel S, Nkya S, Cox SE, Drasar E, Soka D, Komba AN, Mgaya J, Rooks H, Vasavda N, Fegan G, Newton CR, Farrall M, Lay Thein S (2011) Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood 117(4):1390–1392PubMedGoogle Scholar
  35. 35.
    Tshilolo L, Summa V, Gregorj C, Kinsiama C, Bazeboso JA, Avvisati G, Labie D (2012) Foetal hemoglobin, erythrocytes containing fetal hemoglobin, and hematological features in Congolese patients with sickle cell anemia. Anemia 2012:105349PubMedPubMedCentralGoogle Scholar
  36. 36.
    Isah IZ, Udomah FP, Erhabor O, Aghedo F, Uko EK, Okwesili AN et al (2013) Fetal hemoglobin levels in sickle cell disease (SCD) patients in Sokoto, Nigeria. Br J Med Health Sci 1(6):36–47Google Scholar
  37. 37.
    Adeyemo TA, Ojewunmi OO, Oyetunji IA, Rooks H, Rees DC, Akinsulie AO, Akanmu AS, Thein SL, Menzel S (2018) A survey of genetic fetal-hemoglobin modifiers in Nigerian patients with sickle cell anemia. PLoS One 13(6):e0197927PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kato GJ, Steinberg MH, Gladwin MT (2017) Intravascular hemolysis and the pathophysiology of sickle cell disease. J Clin Invest 127(3):750–760PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yu LH, Liu D, Cai R, Shang X, Zhang XH, Ma XX, Yan SH, Fang P, Zheng CG, Wei XF, Liu YH, Zhou TB, Xu XM (2015) Changes in hematological parameters in alpha-thalassemia individuals co-inherited with erythroid Krüppel-like factor mutations. Clin Genet 88(1):56–61Google Scholar
  40. 40.
    Satta S, Paglietti ME, Sollaino MC, Barella S, Moi P, Desogus MF, Demartis FR, Manunza L, Origa R (2017) Changes in HbA2 and Hb F in alpha thalassemia carriers with KLF1 mutation. Blood Cells Mol Dis 64:30–32PubMedGoogle Scholar
  41. 41.
    Bhatnagar P, Purvis S, Barron-Casella E, Debaun MR, Casella JF, Arking DE, Keefer JR (2011) Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J Hum Genet 56(4):316–323PubMedPubMedCentralGoogle Scholar
  42. 42.
    Radmilovic M, Zukic B, Petrovic MS, Bartsakoulia M, Stankovic B, Kotur N, Dokmanovic L, Georgitsi M, Patrinos GP, Pavlovic S (2013) Functional analysis of a novel KLF1 gene promoter variation associated with hereditary persistence of fetal hemoglobin. Ann Hematol 92(1):53–58PubMedGoogle Scholar
  43. 43.
    Gnanapragasam MN, Crispino JD, Ali AM, Weinberg R, Hoffman R, Raza A, Bieker JJ (2018) Survey and evaluation of mutations in the human klf1 transcription unit. Sci Rep 8(1):6587PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hariharan P, Colah R, Ghosh K, Nadkarni A (2018) Differential role of Kruppel like factor 1 (KLF1) gene in red blood cell disorders. Genomics pii: S0888–7543(18)30542–1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marta Nicolau
    • 1
  • Sofia Vargas
    • 1
  • Marisa Silva
    • 1
  • Andreia Coelho
    • 1
  • Emanuel Ferreira
    • 1
  • Joana Mendonça
    • 1
  • Luís Vieira
    • 1
    • 2
  • Paula Kjöllerström
    • 3
  • Raquel Maia
    • 3
  • Rita Silva
    • 4
  • Alexandra Dias
    • 5
  • Teresa Ferreira
    • 5
  • Anabela Morais
    • 6
  • Isabel Mota Soares
    • 7
  • João Lavinha
    • 1
    • 8
  • Paula Faustino
    • 1
    • 9
    • 10
    Email author
  1. 1.Departamento de Genética HumanaInstituto Nacional de Saúde Dr. Ricardo JorgeLisbonPortugal
  2. 2.ToxOmics, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  3. 3.Unidade de Hematologia, Hospital de Dona EstefâniaCentro Hospitalar Universitário de Lisboa Central (CHULC)LisbonPortugal
  4. 4.Unidade de NeuropediatriaHospital de Dona Estefânia, CHULCLisbonPortugal
  5. 5.Núcleo de Hematologia, Departamento de PediatriaHospital Prof. Doutor Fernando FonsecaAmadoraPortugal
  6. 6.Departamento de Pediatria, Hospital de Santa MariaCentro Hospitalar Universitário de Lisboa NorteLisbonPortugal
  7. 7.Departamento de PediatriaHospital Garcia de OrtaAlmadaPortugal
  8. 8.BioISI, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  9. 9.Instituto de Saúde Ambiental (ISAMB), Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
  10. 10.Unidade de Investigação e Desenvolvimento, Departamento de Genética HumanaInstituto Nacional de Saúde Dr. Ricardo JorgeLisbonPortugal

Personalised recommendations