Advertisement

Annals of Hematology

, Volume 98, Issue 10, pp 2347–2355 | Cite as

Clinician-friendly reports of molecular measurable residual disease monitoring in acute promyelocytic leukemia

  • Qisheng Wu
  • Rui Zhang
  • Rongxue Peng
  • Yu Fu
  • Jiawei Zhang
  • Kun Chen
  • Jinming LiEmail author
Original Article
  • 60 Downloads

Abstract

Molecular measurable residual disease (MRD) monitoring based on real-time quantitative reverse transcription PCR (RT-qPCR) plays an important role in acute promyelocytic leukemia (APL) management, but the performance status of clinical reports is unknown. This study focuses on the specific elements in molecular MRD monitoring report and their impact on clinical decision-making. The participating laboratories were asked to submit real and formal clinical reports for mock samples panel with APL clinical case. The MRD-specific elements were analyzed and summarized. The significance of longitudinal MRD monitoring curve and the missing MRD-specific elements for clinical decision-making were assessed. MRD-specific elements were significantly missing in clinical reports. The element “testing results” existed great inconsistencies in the written form of testing items and data. The longitudinal MRD monitoring curve of false-negative or false-positive MRD result was obviously different from all-correct. It not only identified MRD time point of tissue sampling relative to treatment and ensured the reliability of the negative MRD results, but also gave MRD diagnosis, clinical interpretation, and further recommendation. Clinician-friendly reports with MRD-specific elements can better serve clinical practice. The correctly intuitive results and clinically important MRD-specific elements can provide a good description of the reliability and clinical significance of MRD results.

Keywords

Clinician-friendly reports Measurable residual disease Molecular MRD monitoring PML/RARA Acute promyelocytic leukemia 

Notes

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

277_2019_3782_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)
277_2019_3782_MOESM2_ESM.xlsx (11 kb)
ESM 2 (XLSX 11 kb)

References

  1. 1.
    Tallman MS, Kwaan HC (1992) Reassessing the hemostatic disorder associated with acute promyelocytic leukemia. Blood 79(3):543–553Google Scholar
  2. 2.
    Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL, Altman JK, Douer D, Rowe JM, Tallman MS (2011) Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood 118:1248–1254.  https://doi.org/10.1182/blood-2011-04-346437 CrossRefGoogle Scholar
  3. 3.
    Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci PG (1993) The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74(3):423–431CrossRefGoogle Scholar
  4. 4.
    O’Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, Bhatt V, Bixby D, Blum W, Coutre SE, de Lima M, Fathi AT, Fiorella M, Foran JM, Gore SD, Hall AC, Kropf P, Lancet J, Maness LJ, Marcucci G, Martin MG, Moore JO, Olin R, Peker D, Pollyea DA, Pratz K, Ravandi F, Shami PJ, Stone RM, Strickland SA, Wang ES, Wieduwilt M, Gregory K, Ogba N (2017) Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15(7):926–957.  https://doi.org/10.6004/jnccn.2017.0116 CrossRefGoogle Scholar
  5. 5.
    Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Buchner T, Dohner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113(9):1875–1891.  https://doi.org/10.1182/blood-2008-04-150250 CrossRefGoogle Scholar
  6. 6.
    Dayton VJ, McKenna RW, Yohe SL et al (2017) Relapsed acute promyelocytic leukemia lacks “classic” leukemic promyelocyte morphology and can create diagnostic challenges. Am J Clin Pathol 147(1):69–76.  https://doi.org/10.1093/ajcp/aqw202 Google Scholar
  7. 7.
    Imagawa J (2018) Switching from all-trans retinoic acid to arsenic trioxide for newly diagnosed acute promyelocytic leukemia. Leuk Lymphoma 4:1–3.  https://doi.org/10.1080/10428194.2018.1443333 Google Scholar
  8. 8.
    de Thé H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10(11):775–783.  https://doi.org/10.1038/nrc2943 CrossRefGoogle Scholar
  9. 9.
    Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R, Diverio D, Jones K, Aslett H, Batson E, Rennie K, Angell R, Clark RE, Solomon E, Lo-Coco F, Wheatley K, Burnett AK (2009) Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 27(22):3650–3658.  https://doi.org/10.1200/JCO.2008.20.1533 CrossRefGoogle Scholar
  10. 10.
    Albano F, Mestice A, Pannunzio A et al (2006) The biological characteristics of CD34+ CD2+ adult acute promyelocytic leukemia and the CD34 CD2 hypergranular (M3) and microgranular (M3v) phenotypes. Haematologica 91(3):311–316Google Scholar
  11. 11.
    Gabert J, Beillard E, Van der Velden VHJ et al (2003) Standardization and quality control studies of ‘real-time’quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia–a Europe Against Cancer program. Leukemia 17(12):2318–2357.  https://doi.org/10.1038/sj.leu.2403135 CrossRefGoogle Scholar
  12. 12.
    Østergaard M, Nyvold CG, Jovanovic JV, Andersen MT, Kairisto V, Morgan YG, Tobal K, Pallisgaard N, Özbek U, Pfeifer H, Schnittger S, Grubach L, Larsen JK, Grimwade D, Hokland P (2011) Development of standardized approaches to reporting of minimal residual disease data using a reporting software package designed within the European LeukemiaNet. Leukemia 25(7):1168–1173.  https://doi.org/10.1038/leu.2011.69 CrossRefGoogle Scholar
  13. 13.
    Schuurhuis GJ, Heuser M, Freeman S, Béné MC, Buccisano F, Cloos J, Grimwade D, Haferlach T, Hills RK, Hourigan CS, Jorgensen JL, Kern W, Lacombe F, Maurillo L, Preudhomme C, van der Reijden BA, Thiede C, Venditti A, Vyas P, Wood BL, Walter RB, Döhner K, Roboz GJ, Ossenkoppele GJ (2018) Minimal/measurable residual disease in AML: consensus document from ELN MRD Working Party. Blood 131(12):1275–1291.  https://doi.org/10.1182/blood-2017-09-801498 CrossRefGoogle Scholar
  14. 14.
    Beillard E, Pallisgaard N, Van der Velden VHJ et al (2003) Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)–a Europe against cancer program. Leukemia 17(12):2474–2486.  https://doi.org/10.1038/sj.leu.2403136 CrossRefGoogle Scholar
  15. 15.
    Scheuner MT, Hilborne L, Brown J, Lubin, for the members of the RAND IM (2012) A report template for molecular genetic tests designed to improve communication between the clinician and laboratory. Genet Test Mol Biomarkers 16(7):761–769.  https://doi.org/10.1089/gtmb.2011.0328 CrossRefGoogle Scholar
  16. 16.
    Deans Z, Ahn JW, Bergbaum A, et al. Best practice guidelines for internal quality control in genetic laboratories. 2015Google Scholar
  17. 17.
    Gulley ML, Braziel RM, Halling KC et al (2007) Clinical laboratory reports in molecular pathology. Arch Pathol Lab Med 131(6):852–863.  https://doi.org/10.1043/1543-2165(2007)131[852:CLRIMP]2.0.CO;2 Google Scholar
  18. 18.
    Haga SB, Mills R, Pollak KI, Rehder C, Buchanan AH, Lipkus IM, Crow JH, Datto M (2014) Developing patient-friendly genetic and genomic test reports: formats to promote patient engagement and understanding. Genome Med 6(7):58.  https://doi.org/10.1186/s13073-014-0058-6 CrossRefGoogle Scholar
  19. 19.
    Claustres M, Kožich V, Dequeker E et al (2014) Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic). Eur J Hum Genet 22(2):160–170.  https://doi.org/10.1038/ejhg.2013.125 CrossRefGoogle Scholar
  20. 20.
    Dorschner MO, Amendola LM, Shirts BH, Kiedrowski L, Salama J, Gordon AS, Fullerton SM, Tarczy-Hornoch P, Byers PH, Jarvik GP (2014) Refining the structure and content of clinical genomic reports[C]. Am J Med Genet C: Semin Med Genet 166(1):85–92.  https://doi.org/10.1002/ajmg.c.31395 CrossRefGoogle Scholar
  21. 21.
    Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien HF, Wei AH, Löwenberg B, Bloomfield CD (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447.  https://doi.org/10.1182/blood-2016-08-733196 CrossRefGoogle Scholar
  22. 22.
    Zhan S, Li J, Xu R, Wang L, Zhang K, Zhang R (2009) Armored long RNA controls or standards for branched DNA assay for detection of human immunodeficiency virus type. J Clin Microbiol 47(8):2571–2576.  https://doi.org/10.1128/JCM.00232-09 CrossRefGoogle Scholar
  23. 23.
    Foroni L, Wilson G, Gerrard G, Mason J, Grimwade D, White HE, de Castro DG, Austin S, Awan A, Burt E, Clench T, Farruggia J, Hancock J, Irvine AE, Kizilors A, Langabeer S, Milner BJ, Nickless G, Schuh A, Sproul A, Wang L, Wickham C, Cross NCP (2011) Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol 153(2):179–190.  https://doi.org/10.1111/j.1365-2141.2011.08603.x CrossRefGoogle Scholar
  24. 24.
    Nagai S, Nannya Y, Arai S, Yoshiki Y, Takahashi T, Kurokawa M (2010) Molecular or cytogenetic monitoring and preemptive therapy for central nervous system relapse of acute promyelocytic leukemia. Haematologica 95(1):169–171.  https://doi.org/10.3324/haematol.2009.015545 CrossRefGoogle Scholar
  25. 25.
    Dunnen JT, Dalgleish R, Maglott DR et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37(6):564–569.  https://doi.org/10.1002/humu.22981 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qisheng Wu
    • 1
    • 2
    • 3
    • 4
  • Rui Zhang
    • 1
    • 3
  • Rongxue Peng
    • 1
    • 3
  • Yu Fu
    • 1
    • 2
    • 3
  • Jiawei Zhang
    • 1
    • 2
    • 3
  • Kun Chen
    • 1
    • 2
    • 3
  • Jinming Li
    • 1
    • 2
    • 3
    Email author
  1. 1.National Center for Clinical Laboratories, Beijing HospitalNational Center of GerontologyBeijingPeople’s Republic of China
  2. 2.Graduate School, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingPeople’s Republic of China
  3. 3.Beijing Engineering Research Center of Laboratory MedicineBeijing HospitalBeijingPeople’s Republic of China
  4. 4.Division of Pathology and Laboratory MedicineHebei Yanda Lu Daopei HospitalBeijingPeople’s Republic of China

Personalised recommendations