Advertisement

Annals of Hematology

, Volume 98, Issue 10, pp 2379–2388 | Cite as

Variants in ARID5B gene are associated with the development of acute lymphoblastic leukemia in Mexican children

  • Adriana Reyes-León
  • Maribel Ramírez-Martínez
  • Diana Fernández-García
  • David Amaro-Muñoz
  • José Antonio Velázquez-Aragón
  • Consuelo Salas-Labadía
  • Marta Zapata-Tarrés
  • Liliana Velasco-Hidalgo
  • Norma López-Santiago
  • Mayra Ivette López-Ruiz
  • Monica Anabell Malavar-Guadarrama
  • Rocío Cárdenas-Cardós
  • Rogelio Paredes-Aguilera
  • Roberto Rivera-Luna
  • Michael Dean
  • Patricia Pérez-VeraEmail author
Original Article

Abstract

A high impact of ARID5B SNPs on acute lymphoblastic leukemia (ALL) susceptibility has been described in Hispanic children; therefore, it is relevant to know if they influence the high incidence of childhood-ALL in Mexicans. Seven SNPs (rs10821936, rs10994982, rs7089424, rs2393732, rs2393782, rs2893881, rs4948488) of ARID5B were analyzed in 384 controls and 298 ALL children using genomic DNA and TaqMan probes. The SNPs were analyzed for deviation of Hardy-Weinberg equilibrium; Fisher’s exact test was used to compare the genotypic and allelic frequencies between controls and patients. The association between SNPs and ALL susceptibility was calculated, and haplotype and ancestry analyses were conducted. All SNPs were associated with ALL, pre-B ALL, and hyperdiploid-ALL susceptibility (p < 0.05). No association with T-ALL and gene fusions was found (p > 0.05). The seven SNPs were associated with risk of pre-B ALL in younger children; however, rs2393732, rs2393782, rs2893881, and rs4948488 were not associated with susceptibility in older children and adolescents. The CAG haplotype (rs10821936, rs10994982, rs7089424) was strongly associated with ALL risk in our population (p < 0.00001). The frequency of all risk alleles in our ALL, pre-B, and hyperdiploid-ALL patients was higher than that in Hispanic children reported. This is the first report showing the association between rs2393732, rs2393782, and rs4948488 with pre-B hyperdiploid-ALL children. The G allele at rs2893881 confers major risk for pre-B hyperdiploid-ALL in Mexican (OR, 2.29) than in Hispanic children (OR, 1.71). The genetic background of our population could influence the susceptibility to ALL and explain its high incidence in Mexico.

Keywords

Acute lymphoblastic leukemia ARID5B gene Single nucleotide polymorphisms Susceptibility Mexican children 

Notes

Acknowledgments

We would like to thank the participating patients, without whom this study would not have been possible, and the nurses of the Ambulatory Care Unit (AQUA) at the Instituto Nacional de Pediatria, for their assistance.

Funding

This work was supported by the grants from Fondos del Presupuesto Federal para la Investigación (project 085/2012), Consejo Nacional de Ciencia y Tecnologia (CONACyT) Desarrollo Cientifico para Atender Problemas Nacionales (project 216163), and in part by the Intramural Program of the National Cancer Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was reviewed and approved by the Institutional Research and Ethics Committees from both participant Institutions in accordance with the ethical principles of the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All volunteers, parents, or legal tutors were previously informed about the study, and before biological samples were collected, they provided a signed, written informed consent letter to participate.

Supplementary material

277_2019_3730_MOESM1_ESM.docx (359 kb)
ESM 1 (DOCX 359 kb)

References

  1. 1.
    Al-absi B, Razif MFM, Noor SM et al (2017) Contributions of IKZF1 , DDC , CDKN2A , CEBPE , and LMO1 gene polymorphisms to acute lymphoblastic leukemia in a Yemeni population. Genet Test Mol Biomarkers 21:592–599.  https://doi.org/10.1089/gtmb.2017.0084 CrossRefGoogle Scholar
  2. 2.
    Archer NP, Perez-Andreu V, Stoltze U, Scheurer ME, Wilkinson AV, Lin TN, Qian M, Goodings C, Swartz MD, Ranjit N, Rabin KR, Peckham-Gregory EC, Plon SE, de Alarcon PA, Zabriskie RC, Antillon-Klussmann F, Najera CR, Yang JJ, Lupo PJ (2017) Family-based exome-wide association study of childhood acute lymphoblastic leukemia among Hispanics confirms role of ARID5B in susceptibility. PLoS One 12:1–12.  https://doi.org/10.1371/journal.pone.0180488 CrossRefGoogle Scholar
  3. 3.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265.  https://doi.org/10.1093/bioinformatics/bth457 CrossRefGoogle Scholar
  4. 4.
    Bell JI (2002) Single nucleotide polymorphisms and disease gene mapping. Arthritis Res 4:273–278.  https://doi.org/10.1186/ar555 CrossRefGoogle Scholar
  5. 5.
    Bhandari P, Ahmad F, Mandava S, Das BR (2016) Association of genetic variants in ARID5B, IKZF1 and CEBPE with risk of childhood de novo B-lineage acute lymphoblastic leukemia in India. Asian Pac J Cancer Prev 17:3987–3993Google Scholar
  6. 6.
    Bhatia S, Sather HN, Heerema NA et al (2002) Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood 100:1957–1964.  https://doi.org/10.1182/blood-2002-02-0395 CrossRefGoogle Scholar
  7. 7.
    Buffler PA, Kwan ML, Reynolds P, Urayama KY (2005) Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Investig 23:60–75.  https://doi.org/10.1081/CNV-46402 CrossRefGoogle Scholar
  8. 8.
    Chokkalingam AP, Hsu LI, Metayer C, Hansen HM, Month SR, Barcellos LF, Wiemels JL, Buffler PA (2013) Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control 24:1789–1795.  https://doi.org/10.1007/s10552-013-0256-3 CrossRefGoogle Scholar
  9. 9.
    Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, Sofer T, Fernández-Rhodes L, Justice AE, Graff M, Young KL, Seyerle AA, Avery CL, Taylor KD, Rotter JI, Talavera GA, Daviglus ML, Wassertheil-Smoller S, Schneiderman N, Heiss G, Kaplan RC, Franceschini N, Reiner AP, Shaffer JR, Barr RG, Kerr KF, Browning SR, Browning BL, Weir BS, Avilés-Santa ML, Papanicolaou GJ, Lumley T, Szpiro AA, North KE, Rice K, Thornton TA, Laurie CC (2016) Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic community health study/study of Latinos. Am J Hum Genet 98:165–184.  https://doi.org/10.1016/j.ajhg.2015.12.001 CrossRefGoogle Scholar
  10. 10.
    Dickinson HO, Hodgson JT, Parker L (2003) Comparison of Health and Safety Executive and Cumbrian birth cohort studies of risk of leukaemia/non-Hodgkin’s lymphoma in relation to paternal preconceptional irradiation. J Radiol Prot 23:385–403.  https://doi.org/10.1088/0952-4746/23/4/003 CrossRefGoogle Scholar
  11. 11.
    Evans TJ, Milne E, Anderson D, de Klerk NH, Jamieson SE, Talseth-Palmer BA, Bowden NA, Holliday EG, Rudant J, Orsi L, Richardson E, Lavis L, Catchpoole D, Attia JR, Armstrong BK, Clavel J, Scott RJ (2014) Confirmation of childhood acute lymphoblastic leukemia variants, ARID5B and IKZF1, and interaction with parental environmental exposures. PLoS One 9:e110255.  https://doi.org/10.1371/journal.pone.0110255 CrossRefGoogle Scholar
  12. 12.
    Ge Z, Han Q, Gu Y, Ge Q, Ma J, Sloane J, Gao G, Payne KJ, Szekely L, Song C, Dovat S (2018) Aberrant ARID5B expression and its association with Ikaros dysfunction in acute lymphoblastic leukemia. Oncogenesis 7:84.  https://doi.org/10.1038/s41389-018-0095-x CrossRefGoogle Scholar
  13. 13.
    Gharbi H, Ben Hassine I, Soltani I, Safra I, Ouerhani S, Bel Haj Othmen H, Teber M, Farah A, Amouri H, Toumi NH, Abdennebi S, Abbes S, Menif S (2016) Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian children and their contribution to racial differences in leukemia incidence. Pediatr Hematol Oncol 33:157–167.  https://doi.org/10.3109/08880018.2016.1161685 CrossRefGoogle Scholar
  14. 14.
    Gutiérrez-Camino A, López-López E, Martín-Guerrero I, Sánchez-Toledo J, García de Andoin N, Carboné Bañeres A, García-Miguel P, Navajas A, García-Orad Á (2013) Intron 3 of the ARID5B gene: a hot spot for acute lymphoblastic leukemia susceptibility. J Cancer Res Clin Oncol 139:1879–1886.  https://doi.org/10.1007/s00432-013-1512-3 CrossRefGoogle Scholar
  15. 15.
    Healy J, Richer C, Bourgey M, Kritikou EA, Sinnett D (2010) Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia. Haematologica 95:1608–1611.  https://doi.org/10.3324/haematol.2010.022459 CrossRefGoogle Scholar
  16. 16.
    Hsu LI, Chokkalingam AP, Briggs FBS, Walsh K, Crouse V, Fu C, Metayer C, Wiemels JL, Barcellos LF, Buffler PA (2015) Association of genetic variation in IKZF1, ARID5B, and CEBPE and surrogates for early-life infections with the risk of acute lymphoblastic leukemia in Hispanic children. Cancer Causes Control 26:609–619.  https://doi.org/10.1007/s10552-015-0550-3 CrossRefGoogle Scholar
  17. 17.
    Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332.  https://doi.org/10.1111/j.1755-0998.2009.02591.x CrossRefGoogle Scholar
  18. 18.
    Kadan-Lottick NS, Ness KK, Bhatia S, Gurney JG (2003) Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. J Am Med Assoc 290:2008–2014.  https://doi.org/10.1001/jama.290.15.2008 CrossRefGoogle Scholar
  19. 19.
    Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS (2015) PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene 34:2897–2909.  https://doi.org/10.1038/onc.2014.219 CrossRefGoogle Scholar
  20. 20.
    Lin CY, Li MJ, Chang JG, Liu SC, Weng T, Wu KH, Yang SF, Huang FK, Lo WY, Peng CT (2014) High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis 52:140–145.  https://doi.org/10.1016/j.bcmd.2013.10.003 CrossRefGoogle Scholar
  21. 21.
    Linabery AM, Blommer CN, Spector LG, Davies SM, Robison LL, Ross JA (2013) ARID5B and IKZF1 variants, selected demographic factors, and childhood acute lymphoblastic leukemia: a report from the Children’s oncology group. Leuk Res 37:936–942.  https://doi.org/10.1016/j.leukres.2013.04.022 CrossRefGoogle Scholar
  22. 22.
    Martinez-Marignac VL, Valladares A, Cameron E, Chan A, Perera A, Globus-Goldberg R, Wacher N, Kumate J, McKeigue P, O’Donnell D, Shriver MD, Cruz M, Parra EJ (2007) Admixture in Mexico City: implications for admixture mapping of type 2 diabetes genetic risk factors. Hum Genet 120:807–819.  https://doi.org/10.1007/s00439-006-0273-3 CrossRefGoogle Scholar
  23. 23.
    Matasar MJ, Ritchie EK, Consedine N, Magai C, Neugut AI (2006) Incidence rates of the major leukemia subtypes among U.S. Hispanics, Blacks, and non-Hispanic Whites. Leuk Lymphoma 47:2365–2370.  https://doi.org/10.1080/10428190600799888 CrossRefGoogle Scholar
  24. 24.
    McNeil DE, Coté TR, Clegg L, Mauer A (2002) SEER update of incidence and trends in pediatric malignancies: acute lymphoblastic leukemia. Med Pediatr Oncol 39:554–557.  https://doi.org/10.1002/mpo.10161 CrossRefGoogle Scholar
  25. 25.
    Migliorini G, Fiege B, Hosking FJ, Ma Y, Kumar R, Sherborne AL, da Silva Filho MI, Vijayakrishnan J, Koehler R, Thomsen H, Irving JA, Allan JM, Lightfoot T, Roman E, Kinsey SE, Sheridan E, Thompson P, Hoffmann P, Nothen MM, Muhleisen TW, Eisele L, Zimmermann M, Bartram CR, Schrappe M, Greaves M, Stanulla M, Hemminki K, Houlston RS (2013) Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122:3298–3307.  https://doi.org/10.1182/blood-2013-03-491316 CrossRefGoogle Scholar
  26. 26.
    Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JAE, Allan JM, Tomlinson IP, Taylor M, Greaves M, Houlston RS (2009) Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 41:1006–1010.  https://doi.org/10.1038/ng.430 CrossRefGoogle Scholar
  27. 27.
    Pastorczak A, Górniak P, Sherborne A, Hosking F, Trelińska J, Lejman M, Szczepański T, Borowiec M, Fendler W, Kowalczyk J, Houlston RS, Młynarski W (2011) Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Leuk Res 35:1534–1536.  https://doi.org/10.1016/j.leukres.2011.07.034 CrossRefGoogle Scholar
  28. 28.
    Paulsson K, Forestier E, Lilljebjorn H, Heldrup J, Behrendtz M, Young BD, Johansson B (2010) Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc Natl Acad Sci 107:21719–21724.  https://doi.org/10.1073/pnas.1006981107 CrossRefGoogle Scholar
  29. 29.
    Pérez-Saldivar ML, Fajardo-Gutiérrez A, Bernáldez-Ríos R et al (2011) Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology. BMC Cancer 11:355.  https://doi.org/10.1186/1471-2407-11-335 CrossRefGoogle Scholar
  30. 30.
    Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M, Sheridan E, Gast A, Kinsey SE, Lightfoot T, Roman E, Taylor M, Pritchard-Jones K, Stanulla M, Schrappe M, Bartram CR, Houlston RS, Kumar R, Hemminki K (2010) Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 115:1765–1767.  https://doi.org/10.1182/blood-2009-09-241513 CrossRefGoogle Scholar
  31. 31.
    Price AL, Patterson N, Yu F, Cox DR, Waliszewska A, McDonald GJ, Tandon A, Schirmer C, Neubauer J, Bedoya G, Duque C, Villegas A, Bortolini MC, Salzano FM, Gallo C, Mazzotti G, Tello-Ruiz M, Riba L, Aguilar-Salinas CA, Canizales-Quinteros S, Menjivar M, Klitz W, Henderson B, Haiman CA, Winkler C, Tusie-Luna T, Ruiz-Linares A, Reich D (2007) A Genomewide admixture map for Latino populations. Am J Hum Genet 80:1024–1036.  https://doi.org/10.1086/518313 CrossRefGoogle Scholar
  32. 32.
    Rivera-Luna R, Velasco-Hidalgo L, Zapata-Tarrés M, Cárdenas-Cardos R, Aguilar-Ortiz MR (2017) Current outlook of childhood cancer epidemiology in a middle-income country under a public health insurance program. Pediatr Hematol Oncol 34:43–50.  https://doi.org/10.1080/08880018.2016.1276236 CrossRefGoogle Scholar
  33. 33.
    Studd JB, Vijayakrishnan J, Yang M, Migliorini G, Paulsson K, Houlston RS (2017) Genetic and regulatory mechanism of susceptibility to high-hyperdiploid acute lymphoblastic leukaemia at 10p21.2. Nat Commun 8:1–9.  https://doi.org/10.1038/ncomms14616 CrossRefGoogle Scholar
  34. 34.
    Tang H, Choudhry S, Mei R, Morgan M, Rodriguez-Cintron W, Burchard EG, Risch NJ (2007) Recent genetic selection in the ancestral admixture of Puerto Ricans. Am J Hum Genet 81:626–633.  https://doi.org/10.1086/520769 CrossRefGoogle Scholar
  35. 35.
    Treviño LR, Yang W, French D et al (2009) Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 41:1001–1005.  https://doi.org/10.1038/ng.432 CrossRefGoogle Scholar
  36. 36.
    Vijayakrishnan J, Sherborne AL, Sawangpanich R, Hongeng S, Houlston RS, Pakakasama S (2010) Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence. Leuk Lymphoma 51:1870–1874.  https://doi.org/10.3109/10428194.2010.511356 CrossRefGoogle Scholar
  37. 37.
    Walsh KM, Chokkalingam AP, Hsu LI, Metayer C, de Smith AJ, Jacobs DI, Dahl GV, Loh ML, Smirnov IV, Bartley K, Ma X, Wiencke JK, Barcellos LF, Wiemels JL, Buffler PA (2013) Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia 27:2416–2419.  https://doi.org/10.1038/leu.2013.130 CrossRefGoogle Scholar
  38. 38.
    Wang Y, Chen J, Li J, Deng J, Rui Y, Lu Q, Wang M, Tong N, Zhang Z, Fang Y (2013) Association of three polymorphisms in ARID5B, IKZF1and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population. Gene 524:203–207.  https://doi.org/10.1016/j.gene.2013.04.028 CrossRefGoogle Scholar
  39. 39.
    Xu H, Cheng C, Devidas M, Pei D, Fan Y, Yang W, Neale G, Scheet P, Burchard EG, Torgerson DG, Eng C, Dean M, Antillon F, Winick NJ, Martin PL, Willman CL, Camitta BM, Reaman GH, Carroll WL, Loh M, Evans WE, Pui CH, Hunger SP, Relling MV, Yang JJ (2012) ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol 30:751–757.  https://doi.org/10.1200/JCO.2011.38.0345 CrossRefGoogle Scholar
  40. 40.
    Xu H, Yang W, Perez-Andreu V, Devidas M, Fan Y, Cheng C, Pei D, Scheet P, Burchard EG, Eng C, Huntsman S, Torgerson DG, Dean M, Winick NJ, Martin PL, Camitta BM, Bowman WP, Willman CL, Carroll WL, Mullighan CG, Bhojwani D, Hunger SP, Pui CH, Evans WE, Relling MV, Loh ML, Yang JJ (2013) Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst 105:733–742.  https://doi.org/10.1093/jnci/djt042 CrossRefGoogle Scholar
  41. 41.
    Yang W, Trevĩo LR, Yang JJ et al (2010) ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia 24:894–896.  https://doi.org/10.1038/leu.2009.277 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Adriana Reyes-León
    • 1
  • Maribel Ramírez-Martínez
    • 1
  • Diana Fernández-García
    • 1
  • David Amaro-Muñoz
    • 1
  • José Antonio Velázquez-Aragón
    • 2
  • Consuelo Salas-Labadía
    • 1
  • Marta Zapata-Tarrés
    • 3
  • Liliana Velasco-Hidalgo
    • 3
  • Norma López-Santiago
    • 4
  • Mayra Ivette López-Ruiz
    • 5
  • Monica Anabell Malavar-Guadarrama
    • 6
  • Rocío Cárdenas-Cardós
    • 3
  • Rogelio Paredes-Aguilera
    • 4
  • Roberto Rivera-Luna
    • 7
  • Michael Dean
    • 8
  • Patricia Pérez-Vera
    • 1
    Email author
  1. 1.Laboratorio de Genética y CáncerInstituto Nacional de PediatríaMexico CityMexico
  2. 2.Laboratorio de Biología MolecularInstituto Nacional de PediatríaMexico CityMexico
  3. 3.Servicio de OncologíaInstituto Nacional de PediatríaMexico CityMexico
  4. 4.Servicio de HematologíaInstituto Nacional de PediatríaMexico CityMexico
  5. 5.Departamento de OncologíaHospital de Especialidades Pediátricas de Tuxtla GutiérrezTuxtla GutiérrezMexico
  6. 6.Departamento de HematologíaHospital de Especialidades Pediátricas de Tuxtla GutiérrezTuxtla GutiérrezMexico
  7. 7.Subdirección de Hemato-OncologíaInstituto Nacional de PediatríaMexico CityMexico
  8. 8.Laboratory of Translational Genomics, Division of Cancer Epidemiolgy & GeneticsNational Cancer InstituteBethesdaUSA

Personalised recommendations