Advertisement

Annals of Hematology

, Volume 98, Issue 8, pp 1877–1883 | Cite as

Virus reactivation and low dose of CD34+ cell, rather than haploidentical transplantation, were associated with secondary poor graft function within the first 100 days after allogeneic stem cell transplantation

  • Yu-Qian Sun
  • Yu Wang
  • Xiao-Hui Zhang
  • Lan-Ping Xu
  • Kai-Yan Liu
  • Chen-Hua Yan
  • Zhao-Yu Liu
  • Xiao-Jun HuangEmail author
Original Article
  • 54 Downloads

Abstract

Secondary poor graft function (sPGF) is defined as secondary cytopenia after initial engraftment of allogeneic stem cell transplantation (allo-SCT). It has been shown to be associated with poor prognosis; however, there are very few reports on the incidence, risk factors, and outcomes of sPGF. Between January 2015 and December 2015, 564 patients, who received transplantation at Peking University People’s Hospital, were retrospectively reviewed. Among the 490 patients who achieved initial engraftment of both neutrophils and platelets, 28 patients developed sPGF. The cumulative incidence of sPGF on day 100 was 5.7%. The median time of sPGF was 54.5 (34–91) days after transplantation. Low (< median) CD34+ cell dose (p = 0.019, HR 3.07 (95% CI, 1.207–7.813)), Epstein-Barr Virus (EBV) reactivation (p = 0.009, HR 3.648 (95%CI, 1.382–9.629)), and cytomegalovirus (CMV) reactivation (p = 0.003, HR 7.827 (95%CI, 2.002–30.602)) were identified as independent risk factors for sPGF. There was no significant difference in PGF incidence between the matched sibling donor (MSD) group and haploidentical donor (HID) group (p = 0.44). The overall survival of patients with sPGF at 1 year after transplantation was significantly poorer than that of patients with good graft function (GGF) (50.5% versus 87.2%, p < 0.001). In conclusion, sPGF developed in 5.7% patients after allo-SCT, especially in patients with CMV, EBV reactivation, or infusion with a low dose of CD34+ cells. The prognosis of sPGF is still poor owing to a lack of standard treatment.

Keywords

Poor graft function Cytomegalovirus Graft-versus-host disease Allogeneic stem cell transplantation 

Notes

Funding information

This work was supported (in part) by the National Natural Science Foundation of China (Grant No. 81600103), the Key Program of National Natural Science Foundation of China (81530046), the Scientific Research Foundation for Capital Medicine Development (2016-1-4082), the Science and Technology Project of Guangdong Province of China (2016B030230003), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81621001), and the National Key Research and Development Program of China (2017YFA0104500).

Compliance with ethical standards

The Ethics Committee of the Peking University People’s Hospital approved this study. All procedures performed in these studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committees and with the 1964 Helsinki declaration and its later amendments, or with some comparable ethical standards. All patients gave written informed consent.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Sun YQ, He GL, Chang YJ, Xu LP, Zhang XH, Han W, Chen H, Chen YH, Wang Y, Wang FR, Wang JZ, Liu KY, Huang XJ (2015) The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation. Ann Hematol 94(10):1699–1705.  https://doi.org/10.1007/s00277-015-2440-x CrossRefGoogle Scholar
  2. 2.
    Olsson RF, Logan BR, Chaudhury S, Zhu X, Akpek G, Bolwell BJ, Bredeson CN, Dvorak CC, Gupta V, Ho VT, Lazarus HM, Marks DI, Ringden OT, Pasquini MC, Schriber JR, Cooke KR (2015) Primary graft failure after myeloablative allogeneic hematopoietic cell transplantation for hematologic malignancies. Leukemia 29(8):1754–1762.  https://doi.org/10.1038/leu.2015.75 CrossRefGoogle Scholar
  3. 3.
    Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, Fan ZP, Wu DP, Huang XJ (2015) Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood 125(25):3956–3962.  https://doi.org/10.1182/blood-2015-02-627786 CrossRefGoogle Scholar
  4. 4.
    Chang YJ, Xu LP, Liu DH, Liu KY, Han W, Chen YH, Yu W, Chen H, Wang JZ, Zhang XH, Zhao XY, Huang XJ (2009) Platelet engraftment in patients with hematologic malignancies following unmanipulated haploidentical blood and marrow transplantation: effects of CD34+ cell dose and disease status. Biol Blood Marrow Transplant 15(5):632–638.  https://doi.org/10.1016/j.bbmt.2009.02.001 CrossRefGoogle Scholar
  5. 5.
    Nakamae H, Storer B, Sandmaier BM, Maloney DG, Davis C, Corey L, Storb R, Boeckh M (2011) Cytopenias after day 28 in allogeneic hematopoietic cell transplantation: impact of recipient/donor factors, transplant conditions and myelotoxic drugs. Haematologica 96(12):1838–1845.  https://doi.org/10.3324/haematol.2011.044966 CrossRefGoogle Scholar
  6. 6.
    Lee KH, Lee JH, Choi SJ, Lee JH, Kim S, Seol M, Lee YS, Kim WK, Lee JS (2004) Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation - frequency and outcomes. Bone Marrow Transplant 33(7):729–734.  https://doi.org/10.1038/sj.bmt.1704428 CrossRefGoogle Scholar
  7. 7.
    Dominietto A, Raiola AM, van Lint MT, Lamparelli T, Gualandi F, Berisso G, Bregante S, Frassoni F, Casarino L, Verdiani S, Bacigalupo A (2001) Factors influencing haematological recovery after allogeneic haemopoietic stem cell transplants: graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. Br J Haematol 112(1):219–227CrossRefGoogle Scholar
  8. 8.
    Nash RA, Kurzrock R, DiPersio J, Vose J, Linker C, Maharaj D, Nademanee AP, Negrin R, Nimer S, Shulman H, Ashby M, Jones D, Appelbaum FR, Champlin R (2000) A phase I trial of recombinant human thrombopoietin in patients with delayed platelet recovery after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 6(1):25–34CrossRefGoogle Scholar
  9. 9.
    Bruno B, Gooley T, Sullivan KM, Davis C, Bensinger WI, Storb R, Nash RA (2001) Secondary failure of platelet recovery after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7(3):154–162.  https://doi.org/10.1053/bbmt.2001.v7.pm11302549 CrossRefGoogle Scholar
  10. 10.
    Akahoshi Y, Kanda J, Gomyo A, Hayakawa J, Komiya Y, Harada N, Kameda K, Ugai T, Wada H, Ishihara Y, Kawamura K, Sakamoto K, Sato M, Terasako-Saito K, Kimura SI, Kikuchi M, Nakasone H, Kako S, Kanda Y (2016) Risk factors and impact of secondary failure of platelet recovery after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 22(9):1678–1683.  https://doi.org/10.1016/j.bbmt.2016.06.003 CrossRefGoogle Scholar
  11. 11.
    Kong Y, Chang YJ, Wang YZ, Chen YH, Han W, Wang Y, Sun YQ, Yan CH, Wang FR, Liu YR, Xu LP, Liu DH, Huang XJ (2013) Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 19(10):1465–1473.  https://doi.org/10.1016/j.bbmt.2013.07.014 CrossRefGoogle Scholar
  12. 12.
    Bilgrami S, Almeida GD, Quinn JJ, Tuck D, Bergstrom S, Dainiak N, Poliquin C, Ascensao JL (1994) Pancytopenia in allogeneic marrow transplant recipients: role of cytomegalovirus. Br J Haematol 87(2):357–362CrossRefGoogle Scholar
  13. 13.
    Capobianchi A, Iori AP, Micozzi A, Torelli GF, Testi AM, Girmenia C, Santilli S, Barberi W, Antonelli G, Foa R, Gentile G (2014) Cytomegalovirus in bone marrow cells correlates with cytomegalovirus in peripheral blood leukocytes. J Clin Microbiol 52(6):2183–2185.  https://doi.org/10.1128/JCM.00702-14 CrossRefGoogle Scholar
  14. 14.
    von Bonin M, Bornhauser M (2014) Concise review: the bone marrow niche as a target of graft versus host disease. Stem Cells 32(6):1420–1428.  https://doi.org/10.1002/stem.1691 CrossRefGoogle Scholar
  15. 15.
    Szyska M, Na IK (2016) Bone marrow GvHD after allogeneic hematopoietic stem cell transplantation. Front Immunol 7:118.  https://doi.org/10.3389/fimmu.2016.00118 CrossRefGoogle Scholar
  16. 16.
    Lin Y, Hu X, Cheng H, Pang Y, Wang L, Zou L, Xu S, Zhuang X, Jiang C, Yuan W, Cheng T, Wang J (2014) Graft-versus-host disease causes broad suppression of hematopoietic primitive cells and blocks megakaryocyte differentiation in a murine model. Biol Blood Marrow Transplant 20(9):1290–1300.  https://doi.org/10.1016/j.bbmt.2014.05.009 CrossRefGoogle Scholar
  17. 17.
    Bittencourt H, Rocha V, Filion A, Ionescu I, Herr AL, Garnier F, Ades L, Esperou H, Devergie A, Ribaud P, Socie G, Gluckman E (2005) Granulocyte colony-stimulating factor for poor graft function after allogeneic stem cell transplantation: 3 days of G-CSF identifies long-term responders. Bone Marrow Transplant 36(5):431–435.  https://doi.org/10.1038/sj.bmt.1705072 CrossRefGoogle Scholar
  18. 18.
    Master S, Dwary A, Mansour R, Mills GM, Koshy N (2018) Use of eltrombopag in improving poor graft function after allogeneic hematopoietic stem cell transplantation. Case Reports in Oncol 11(1):191–195.  https://doi.org/10.1159/000487229 CrossRefGoogle Scholar
  19. 19.
    Dyba J, Tinmouth A, Bredeson C, Matthews J, Allan DS (2016) Eltrombopag after allogeneic haematopoietic cell transplantation in a case of poor graft function and systematic review of the literature. Transfus Med 26(3):202–207.  https://doi.org/10.1111/tme.12300 CrossRefGoogle Scholar
  20. 20.
    Sun YQ, Liu DH, Xu LP, Zhang XH, Liu KY, Huang XJ (2013) The efficacy and safety of recombinant human granulocyte colony stimulating factor primed donor peripheral cell harvest in treatment of poor graft function after allogeneic stem cell transplantation. Zhonghua Nei Ke Za Zhi 52(9):730–733Google Scholar
  21. 21.
    Mainardi C, Ebinger M, Enkel S, Feuchtinger T, Teltschik HM, Eyrich M, Schumm M, Rabsteyn A, Schlegel P, Seitz C, Schwarze CP, Muller I, Greil J, Bader P, Schlegel PG, Martin D, Holzer U, Doring M, Handgretinger R, Lang P (2018) CD34(+) selected stem cell boosts can improve poor graft function after paediatric allogeneic stem cell transplantation. Br J Haematol 180(1):90–99.  https://doi.org/10.1111/bjh.15012 CrossRefGoogle Scholar
  22. 22.
    Ghobadi A, Fiala MA, Ramsingh G, Gao F, Abboud CN, Stockerl-Goldstein K, Uy GL, Grossman BJ, Westervelt P, DiPersio JF (2017) Fresh or cryopreserved CD34(+)-selected mobilized peripheral blood stem and progenitor cells for the treatment of poor graft function after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 23(7):1072–1077.  https://doi.org/10.1016/j.bbmt.2017.03.019 CrossRefGoogle Scholar
  23. 23.
    Liu X, Wu M, Peng Y, Chen X, Sun J, Huang F, Fan Z, Zhou H, Wu X, Yu G, Zhang X, Li Y, Xiao Y, Song C, Xiang AP, Liu Q (2014) Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: a pilot prospective study. Cell Transplant 23(9):1087–1098.  https://doi.org/10.3727/096368912X661319 CrossRefGoogle Scholar
  24. 24.
    Kong Y, Wang YT, Cao XN, Song Y, Chen YH, Sun YQ, Wang Y, Zhang XH, Xu LP, Huang XJ (2017) Aberrant T cell responses in the bone marrow microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation. J Transl Med 15(1):57.  https://doi.org/10.1186/s12967-017-1159-y CrossRefGoogle Scholar
  25. 25.
    Shi MM, Kong Y, Song Y, Sun YQ, Wang Y, Zhang XH, Xu LP, Liu KY, Huang XJ (2016) Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood 128(25):2988–2999.  https://doi.org/10.1182/blood-2016-03-702803 CrossRefGoogle Scholar
  26. 26.
    Wang YT, Kong Y, Song Y, Han W, Zhang YY, Zhang XH, Chang YJ, Jiang ZF, Huang XJ (2016) Increased type 1 immune response in the bone marrow immune microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 22(8):1376–1382.  https://doi.org/10.1016/j.bbmt.2016.04.016 CrossRefGoogle Scholar
  27. 27.
    Kong Y, Song Y, Hu Y, Shi MM, Wang YT, Wang Y, Zhang XH, Xu LP, Liu KY, Deng HK, Huang XJ (2016) Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants. Oncotarget 7(21):30892–30906.  https://doi.org/10.18632/oncotarget.8810 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Qian Sun
    • 1
    • 2
  • Yu Wang
    • 1
    • 2
  • Xiao-Hui Zhang
    • 1
    • 2
  • Lan-Ping Xu
    • 1
    • 2
  • Kai-Yan Liu
    • 1
    • 2
  • Chen-Hua Yan
    • 1
    • 2
  • Zhao-Yu Liu
    • 3
  • Xiao-Jun Huang
    • 1
    • 2
    • 4
    Email author
  1. 1.Peking University People’s HospitalPeking University Institute of hematologyBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological DiseasesBeijingPeople’s Republic of China
  3. 3.The Second Hospital of Shanxi Medical UniversityTaiyuanChina
  4. 4.Peking-Tsinghua Center for Life SciencesBeijingChina

Personalised recommendations