Advertisement

Annals of Hematology

, Volume 98, Issue 7, pp 1561–1572 | Cite as

Reduced peripheral blood superoxide dismutase 2 expression in sickle cell disease

  • Iakovos Armenis
  • Vassiliki Kalotychou
  • Revekka Tzanetea
  • Ioannis Moyssakis
  • Dimitra Anastasopoulou
  • Costas Pantos
  • Kostas Konstantopoulos
  • Ioannis Rombos
Original Article

Abstract

Sickle cell disease (SCD), a hereditary form of chronic hemolytic anemia, is characterized by acute vascular occlusion and chronic complications as pulmonary hypertension (PH), a hallmark of higher mortality. This study aimed to determine peripheral blood expression of superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme in SCD patients on the mRNA level and compared it with SOD2 expression in healthy individuals. It also aimed to detect possible differences in SOD2 expression among patients with/without specific SCD complications and to detect possible correlations with patient laboratory parameters. SOD2 mRNA levels were significantly lower in SCD patients in comparison with controls and correlated with red blood cell count, reticulocyte count, platelet count, C-reactive protein, ferritin, and brain natriuretic peptide values. SCD patients with echocardiographic indications of PH featured significantly reduced SOD2 expression in comparison with patients without such indications. Consequently, SOD2 expression emerges as a potential biomarker of PH in SCD being a link among hemolysis, inflammation, iron overload, oxidative stress, and SCD cardiopathy.

Keywords

Sickle cell disease Superoxide dismutase SOD2 MnSOD Pulmonary hypertension 

Notes

Acknowledgments

The study was supported by the Program: “IKY fellowships of excellence for postgraduate studies in Greece-Siemens Program.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Steinberg MH (2008) Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. ScientificWorldJournal 25:1295–1324CrossRefGoogle Scholar
  2. 2.
    Erdei J, Tóth A, Balogh E, Nyakundi BB, Bányai E, Ryffel B, Paragh G, Cordero MD, Jeney V (2018) Induction of NLRP3 inflammasome activation by heme in human endothelial cells. Oxidative Med Cell Longev 2018:4310816CrossRefGoogle Scholar
  3. 3.
    Kanavaki I, Makrythanasis P, Lazaropoulou C, Kattamis A, Tzanetea R, Kalotychou V, Rombos I, Papassotiriou I (2012) Adhesion molecules and high-sensitivity C-reactive protein levels in patients with sickle cell beta-thalassaemia. Eur J Clin Investig 42:27–33CrossRefGoogle Scholar
  4. 4.
    Krishnan S, Setty Y, Betal SG, Vijender V, Rao K, Dampier C, Stuart M (2010) Increased levels of the inflammatory biomarker C-reactive protein at baseline are associated with childhood sickle cell vasocclusive crises. Br J Haematol 148:797–804CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chirico EN, Pialoux V (2012) Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMBLife 64:72–80CrossRefGoogle Scholar
  6. 6.
    Gizi A, Papassotiriou I, Apostolakou F, Lazaropoulou C, Papastamataki M, Kanavaki I, Kalotychou V, Goussetis E, Kattamis A, Rombos I, Kanavakis E (2011) Assessment of oxidative stress in patients with sickle cell disease: the glutathione system and the oxidant-antioxidant status. Blood Cell Mol Dis 46:220–225CrossRefGoogle Scholar
  7. 7.
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119CrossRefGoogle Scholar
  8. 8.
    Gladwin MT (2017) Cardiovascular complications in patients with sickle cell disease. Hematology Am Soc Hematol Educ Program 2017(1):423–430CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Parent F, Bachir D, Inamo J, Lionnet F, Driss F, Loko G, Habibi A, Bennani S, Savale L, Adnot S, Maitre B, Yaïci A, Hajji L, O'Callaghan DS, Clerson P, Girot R, Galacteros F, Simonneau G (2011) A hemodynamic study of pulmonary hypertension in sickle cell disease. N Engl J Med 365:44–53CrossRefGoogle Scholar
  10. 10.
    Dhar SK, St Clair DK (2012) Manganese superoxide dismutase regulation and cancer. Free Rad Biol Med 52:2209–2222CrossRefPubMedGoogle Scholar
  11. 11.
    Yamashita N, Nishida M, Hoshida S, Kuzuya T, Hori M, Taniguchi N, Kamada T, Tada M (1994) Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 94:2193–2199CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Farias ICC, Mendonça-Belmont TF, da Silva AS, do ÓKP, Ferreira F, Medeiros FS, da Silva Vasconcelos LR, Bezerra MAC, da Silva Araújo A, de Moura PMMF et al (2018) Association of the SOD2 polymorphism (Val16Ala) and SOD activity with vaso-occlusive crisis and acute splenic sequestration in children with sickle cell anemia. Mediterr J Hematol Infect Dis 10:e2018012CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rombos Y, Tzanetea R, Kalotychou V, Konstantopoulos K, Simitzis S, Tassiopoulos T, Aessopos A, Fessas P (2002) Amelioration of painful crises in sickle cell disease by venesections. Blood Cells Mol Dis 2:283–287CrossRefGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 25:402–408CrossRefGoogle Scholar
  15. 15.
    Klings ES, Machado RF, Barst RJ, Morris CR, Mubarak KK, Gordeuk VR, Kato GJ, Ataga KI, Gibbs JS, Castro O, Rosenzweig EB, Sood N, Hsu L, Wilson KC, Telen MJ, Decastro LM, Krishnamurti L, Steinberg MH, Badesch DB, Gladwin MT (2014) An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am J Respir Crit Care Med 189:727–740CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Henderson AR (2006) Testing experimental data for univariate normality. Clin Chim Acta 366:112–129CrossRefPubMedGoogle Scholar
  17. 17.
    Akinyoola AL, Adediran IA, Asaleye CM, Bolarinwa AR (2009) Risk factors for osteonecrosis of the femoral head in patients with sickle cell disease. Int Orthop 33:923–926CrossRefPubMedGoogle Scholar
  18. 18.
    de Oliveira Filho RA, Silva GJ, de Farias Domingos I, Hatzlhofer BL, da Silva Araújo A, de Lima Filho JL, Bezerra MA, Martins DB, de Araújo RF (2013) Association between the genetic polymorphisms of glutathione S-transferase (GSTM1 and GSTT1) and the clinical manifestations in sickle cell anemia. Blood Cells Mol Dis 51:76–79CrossRefPubMedGoogle Scholar
  19. 19.
    Damy T, Bodez D, Habibi A, Guellich A, Rappeneau S, Inamo J, Guendouz S, Gellen-Dautremer J, Pissard S, Loric S, Wagner-Ballon O, Godeau B, Adnot S, Dubois-Randé JL, Hittinger L, Galactéros F, Bartolucci P (2016) Haematological determinants of cardiac involvement in adults with sickle cell disease. Eur Heart J 37:1158–1167CrossRefPubMedGoogle Scholar
  20. 20.
    Maitra P, Caughey M, Robinson L, Desai PC, Jones S, Nouraie M, Gladwin MT, Hinderliter A, Cai J, Ataga KI (2017) Risk factors for mortality in adult patients with sickle cell disease: a meta-analysis of studies in North America and Europe. Haematologica. 102:626–636CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Meier ER, Fasano RM, Levett PR (2017) A systematic review of the literature for severity predictors in children with sickle cell anemia. Blood Cells Mol Dis 65:86–94CrossRefPubMedGoogle Scholar
  22. 22.
    Bhagat S, Patra PK, Thakur AS (2012) Association of Inflammatory biomarker C-reactive protein, lipid peroxidation and antioxidant capacity marker with HbF level in sickle cell disease patients from Chattisgarh. Indian J Clin Biochem 27:394–399CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, Zamboni DS, Bozza MT (2014) Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci U S A 111:E4110–E4118CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jensen PD (2004) Evaluation of iron overload. Br J Haematol 124:697–711CrossRefPubMedGoogle Scholar
  25. 25.
    van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, Mendelsohn L, Nekhai S, Gordeuk VR, Taylor JG 6th et al (2015) Iron, inflammation, and early death in adults with sickle cell disease. Circ Res 116:298–306CrossRefPubMedGoogle Scholar
  26. 26.
    Inati A, Musallam KM, Wood JC, Taher AT (2010) Iron overload indices rise linearly with transfusion rate in patients with sickle cell disease. Blood. 115:2980–2981CrossRefPubMedGoogle Scholar
  27. 27.
    Ballas SK, Zeidan AM, Duong VH, DeVeaux M, Heeney MM (2018) The effect of iron chelation therapy on overall survival in sickle cell disease and β-thalassemia: a systematic review. Am J Hematol 93:943–952CrossRefPubMedGoogle Scholar
  28. 28.
    Curtis SA, Danda N, Etzion Z, Cohen HW, Billett HH (2015) Elevated steady state WBC and platelet counts are associated with frequent emergency room use in adults with sickle cell anemia. PLoS One 10:e0133116CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Miller ST, Sleeper LA, Pegelow CH, Enos LE, Wang WC, Weiner SJ, Wethers DL, Smith J, Kinney TR (2000) Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med 342:83–89CrossRefPubMedGoogle Scholar
  30. 30.
    Sarris I, Litos M, Bewley S, Okpala I, Seed P, Oteng-Ntim E (2008) Platelet count as a predictor of the severity of sickle cell disease during pregnancy. J Obstet Gynaecol 28:688–691CrossRefPubMedGoogle Scholar
  31. 31.
    Ugwu AO, Ibegbulam OG, Nwagha TU, Madu AJ, Ocheni S, Okpala I (2017) Clinical and laboratory predictors of frequency of painful crises among sickle cell anaemia patients in Nigeria. J Clin Diagn Res 11:EC22–EC25PubMedPubMedCentralGoogle Scholar
  32. 32.
    Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ (2007) Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood. 110:2166–2172CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Caughey MC, Poole C, Ataga KI, Hinderliter AL (2015) Estimated pulmonary artery systolic pressure and sickle cell disease: a meta-analysis and systematic review. Br J Haematol 170:416–424CrossRefPubMedGoogle Scholar
  34. 34.
    McQuillan BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 104:2797–2802CrossRefPubMedGoogle Scholar
  35. 35.
    Ellithy HN, Yousri S, Shahin GH (2015) Relation between glutathione S-transferase genes (GSTM1, GSTT1, and GSTP1) polymorphisms and clinical manifestations of sickle cell disease in Egyptian patients. Hematology. 20:598–606CrossRefPubMedGoogle Scholar
  36. 36.
    Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL (2015) Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl) 93:229–242CrossRefGoogle Scholar
  37. 37.
    Mata M, Sarrion I, Milian L, Juan G, Ramon M, Naufal D, Gil J, Ridocci F, Fabregat-Andrés O, Cortijo J (2012) PGC-1α induction in pulmonary arterial hypertension. Oxidative Med Cell Longev 2012:236572CrossRefGoogle Scholar
  38. 38.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mahadavan G, Nguyen TH, Horowitz JD (2014) Brain natriuretic peptide: a biomarker for all cardiac disease? Curr Opin Cardiol 29:160–166CrossRefPubMedGoogle Scholar
  40. 40.
    Niss O, Fleck R, Makue F, Alsaied T, Desai P, Towbin JA, Malik P, Taylor MD, Quinn CT (2017) Association between diffuse myocardial fibrosis and diastolic dysfunction in sickle cell anemia. Blood. 130:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Srisawasdi P, Vanavanan S, Charoenpanichkit C, Kroll MH (2010) The effect of renal dysfunction on BNP, NT-proBNP, and their ratio. Am J Clin Pathol 133:14–23CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Iakovos Armenis
    • 1
    • 2
  • Vassiliki Kalotychou
    • 1
  • Revekka Tzanetea
    • 1
  • Ioannis Moyssakis
    • 3
  • Dimitra Anastasopoulou
    • 1
  • Costas Pantos
    • 4
  • Kostas Konstantopoulos
    • 5
  • Ioannis Rombos
    • 6
  1. 1.1st Department of Internal MedicineLaikon General Hospital, National and Kapodistrian University of Athens, Medical SchoolAthensGreece
  2. 2.Department of CardiologyOnassis Cardiac Surgery CenterAthensGreece
  3. 3.Department of CardiologyLaikon General HospitalAthensGreece
  4. 4.Department of PharmacologyNational and Kapodistrian University of Athens, Medical SchoolAthensGreece
  5. 5.Department of HematologyLaikon General Hospital, National and Kapodistrian University of Athens, Medical SchoolAthensGreece
  6. 6.Metropolitan HospitalAthensGreece

Personalised recommendations