Cytomegalovirus infection is associated with AML relapse after allo-HSCT: a meta-analysis of observational studies

  • Yu-Lin Zhang
  • Yan Zhu
  • Qing Xiao
  • Li Wang
  • Lin Liu
  • Xiao-Hua LuoEmail author
Original Article


Cytomegalovirus (CMV) infection and primary disease relapse remain challenging problems after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We sought to assess the association between CMV infection and disease relapse after transplantation. PubMed, EMBASE, the Cochrane Library, SCI, and Chinese Biomedicine Databases were searched up to July 1, 2018, for all studies that investigate pre-transplant CMV serostatus, CMV replication, and primary disease relapse in allo-HSCT patients with hematologic malignancies. Meta-analysis of 24 eligible cohort studies showed a significantly lower relapse risk after allo-HSCT in patients with CMV replication in acute myeloid leukemia (AML) (HR = 0.64, 95% CI, 0.50–0.83; P < 0.001) subgroup. However, CMV replication was associated with increased non-relapse mortality (NRM) in AML patients (HR = 1.64, 95% CI, 1.46–1.85; P < 0.001), but not associated with overall survival (OS) or graft-versus-host disease for AML patients (P > 0.05). There was no association between pre-transplant CMV serostatus and disease relapse, although D−/R− was associated with better OS in acute leukemia patients (HR = 0.89, 95% CI, 0.83–0.96; P = 0.003). In AML patients, CMV replication may be a protective predictor against disease relapse, although the potential benefit of CMV replication is offset by increased NRM.


Cytomegalovirus infection Relapse Acute myeloid leukemia Allogeneic hematopoietic stem cell transplantation Meta-analysis 



This work was supported by the National Natural Science Foundation of China (grant 81100388, grant 81470344).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the local institutional review board.

Supplementary material

277_2018_3585_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 30.2 kb)
277_2018_3585_MOESM2_ESM.doc (98 kb)
ESM 2 (DOC 98.0 kb)


  1. 1.
    Ljungman P, Boeckh M, Hirsch HH, Josephson F, Lundgren J, Nichols G, Pikis A, Razonable RR, Miller V, Griffiths PD (2017) Definitions of cytomegalovirus infection and disease in transplant patients for use in clinical trials. Clin Infect Dis 64(1):87–91Google Scholar
  2. 2.
    Ljungman P (2007) Risk assessment in haematopoietic stem cell transplantation: viral status. Best Pract Res Clin Haematol 20:209–217CrossRefGoogle Scholar
  3. 3.
    Cantoni N, Hirsch HH, Khanna N, Gerull S, Buser A, Bucher C, Halter J, Heim D, Tichelli A, Gratwohl A (2010) Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant 16:1309–1314CrossRefGoogle Scholar
  4. 4.
    Meyers JD, Flournoy N, Thomas ED (1986) Risk factors for cytomegalovirus infection after human marrow transplantation. J Infect Dis 153:478–488CrossRefGoogle Scholar
  5. 5.
    Lacey SF, Gallez-Hawkins G, Crooks M, Martinez J, Senitzer D, Forman SJ, Spielberger R, Zaia JA, Diamond DJ (2002) Characterization of cytotoxic function of CMV-pp65-specific CD8+ T-lymphocytes identified by HLA tetramers in recipients and donors of stem-cell transplants. Transplantation 74:722–732CrossRefGoogle Scholar
  6. 6.
    Luo X-H, Huang X-J, Liu K-Y, Xu L-P, Liu D-H (2010) Protective immunity transferred by infusion of cytomegalovirus-specific CD8+ T cells within donor grafts: its associations with cytomegalovirus reactivation following unmanipulated allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 16:994–1004CrossRefGoogle Scholar
  7. 7.
    Luo XH, Huang XJ, Li D, Liu KY, Xu LP, Liu DH (2013) Immune reconstitution to cytomegalovirus following partially matched-related donor transplantation: impact of in vivo T-cell depletion and granulocyte colony-stimulating factor-primed peripheral blood/bone marrow mixed grafts. Transpl Infect Dis 15:22–33CrossRefGoogle Scholar
  8. 8.
    Luo X-H, Chang Y-J, Huang X-J (2014) Improving cytomegalovirus-specific T cell reconstitution after haploidentical stem cell transplantation. J Immunol Res 2014:1–12CrossRefGoogle Scholar
  9. 9.
    Elmaagacli AH, Steckel NK, Koldehoff M, Hegerfeldt Y, Trenschel R, Ditschkowski M, Christoph S, Gromke T, Kordelas L, Ottinger HD (2011) Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118:1402–1412CrossRefGoogle Scholar
  10. 10.
    Green ML, Leisenring WM, Xie H, Walter RB, Mielcarek M, Sandmaier BM, Riddell SR, Boeckh M (2013) CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood 122:1316–1324CrossRefGoogle Scholar
  11. 11.
    Behrendt CE, Rosenthal J, Bolotin E, Nakamura R, Zaia J, Forman SJ (2009) Donor and recipient CMV serostatus and outcome of pediatric allogeneic HSCT for acute leukemia in the era of CMV-preemptive therapy. Biol Blood Marrow Transplant 15:54–60CrossRefGoogle Scholar
  12. 12.
    Manjappa S, Bhamidipati PK, Stokerl-Goldstein KE, DiPersio JF, Uy GL, Westervelt P, Liu J, Schroeder MA, Vij R, Abboud CN (2014) Protective effect of cytomegalovirus reactivation on relapse after allogeneic hematopoietic cell transplantation in acute myeloid leukemia patients is influenced by conditioning regimen. Biol Blood Marrow Transplant 20:46–52CrossRefGoogle Scholar
  13. 13.
    Nakamura R, Battiwalla M, Solomon S, Follmann D, Chakrabarti S, Cortez K, Hensel N, Childs R, Barrett AJ (2004) Persisting posttransplantation cytomegalovirus antigenemia correlates with poor lymphocyte proliferation to cytomegalovirus antigen and predicts for increased late relapse and treatment failure. Biol Blood Marrow Transplant 10:49–57CrossRefGoogle Scholar
  14. 14.
    Vítek A, Lukášová M, Chudomel V, Májský A, Souček J, Kobylka P, Kořínková P, Loudová M, Dobrovolná M, Matějková E (2012) Transplantation of haematopoietic cells and its role in the treatment of haematopoiesis during the last 25 years. Vnitrni Lekarstvi 58:46–55Google Scholar
  15. 15.
    Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16CrossRefGoogle Scholar
  16. 16.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012CrossRefGoogle Scholar
  17. 17.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefGoogle Scholar
  18. 18.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560CrossRefGoogle Scholar
  19. 19.
    Spruance SL, Reid JE, Grace M, Samore M (2004) Hazard ratio in clinical trials. Antimicrob Agents Chemother 48:2787–2792CrossRefGoogle Scholar
  20. 20.
    Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463CrossRefGoogle Scholar
  21. 21.
    Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P. 2011. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In Ottawa, Ontario, Canada: Ottawa Hospital Research Institute. Accessed at Accessed 30 Sept 2018
  22. 22.
    Beck JC, Wagner JE, DeFor TE, Brunstein CG, Schleiss MR, Young J-A, Weisdorf DH, Cooley S, Miller JS, Verneris MR (2010) Impact of cytomegalovirus (CMV) reactivation after umbilical cord blood transplantation. Biol Blood Marrow Transplant 16:215–222CrossRefGoogle Scholar
  23. 23.
    Broers AE, van der Holt R, van Esser JW, Gratama J-W, Henzen-Logmans S, Kuenen-Boumeester V, Löwenberg B, Cornelissen JJ (2000) Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell–depleted stem cell transplantation. Blood 95:2240–2245PubMedGoogle Scholar
  24. 24.
    Chen Y, Xu L-P, Liu K-Y, Chen H, Chen Y-H, Zhang X-H, Wang Y, Wang F-R, Han W, Wang J-Z (2016) Risk factors for cytomegalovirus DNAemia following haploidentical stem cell transplantation and its association with host hepatitis B virus serostatus. J Clin Virol 75:10–15CrossRefGoogle Scholar
  25. 25.
    Inagaki J, Noguchi M, Kurauchi K, Tanioka S, Fukano R, Okamura J (2016) Effect of cytomegalovirus reactivation on relapse after allogeneic hematopoietic stem cell transplantation in pediatric acute leukemia. Biol Blood Marrow Transplant 22:300–306CrossRefGoogle Scholar
  26. 26.
    Ito S, Pophali P, Wu C, Koklanaris EK, Superata J, Fahle GA, Childs R, Battiwalla M, Barrett AJ (2013) CMV reactivation is associated with a lower incidence of relapse after allo-SCT for CML. Bone Marrow Transplant 48:1313–1316CrossRefGoogle Scholar
  27. 27.
    Jacobsen N, Badsberg JH, Lönnqvist B, Ringden O, Volin L, Rajantie J, Nikoskelainen J, Keiding N (1990) Graft-versus-leukaemia activity associated with CMV-seropositive donor, post-transplant CMV infection, young donor age and chronic graft-versus-host disease in bone marrow allograft recipients. The Nordic Bone Marrow Transplantation Group. Bone Marrow Transplant 5:413–418PubMedGoogle Scholar
  28. 28.
    Jang JE, Kim SJ, Cheong J-W, Hyun SY, Kim YD, Kim YR, Kim JS, Min YH (2015) Early CMV replication and subsequent chronic GVHD have a significant anti-leukemic effect after allogeneic HSCT in acute myeloid leukemia. Ann Hematol 94:275–282CrossRefGoogle Scholar
  29. 29.
    Jeljeli M, Khourouj GE, Porcher R, Fahd M, Leveillé S, Yakouben K, Ouachée-Chardin M, LeGoff J, Cordeiro DJ, Pédron B (2014) Relationship between cytomegalovirus (CMV) reactivation, CMV-driven immunity, overall immune recovery and graft-versus-leukaemia effect in children. Br J Haematol 166:229–239CrossRefGoogle Scholar
  30. 30.
    Kim DH, Won DI, Lee NY, Sohn SK, Baek JH, Kim JG, Suh JS, Lee KB (2006) Survival benefit of asymptomatic cytomegalovirus reactivation after HLA-identical allogeneic peripheral blood stem cell transplantation. Transplantation 81:101–108CrossRefGoogle Scholar
  31. 31.
    Koldehoff M, Ross SR, Dührsen U, Beelen DW, Elmaagacli AH (2017) Early CMV-replication after allogeneic stem cell transplantation is associated with a reduced relapse risk in lymphoma. Leuk Lymphoma 58:822–833CrossRefGoogle Scholar
  32. 32.
    Lin X, Ou Y, Long H, Huang Y, Song C, Lu Z, Guo K, Wu B, Xu J (2016) Cytomegalovirus infection after haploidentical stem cell transplantation may reduce relapse risk in leukemia. Zhonghua nei ke za zhi 55:107–110PubMedGoogle Scholar
  33. 33.
    Mariotti J, Maura F, Spina F, Roncari L, Dodero A, Farina L, Montefusco V, Carniti C, Sarina B, Patriarca F (2014) Impact of cytomegalovirus replication and cytomegalovirus serostatus on the outcome of patients with B cell lymphoma after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 20:885–890CrossRefGoogle Scholar
  34. 34.
    Niu X, He H, Zhou R, Xu X (2015) Impact of human cytomegalovirus viremia on relapse after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia patients. Zhonghua Yi Xue Za Zhi 95:123–125PubMedGoogle Scholar
  35. 35.
    Ramanathan M, Teira P, Battiwalla M, Barrett J, Ahn K, Chen M, Green J, Laughlin M, Lazarus H, Marks D (2016) Impact of early CMV reactivation in cord blood stem cell recipients in the current era. Bone Marrow Transplant 51:1113–1120CrossRefGoogle Scholar
  36. 36.
    Schmidt-Hieber M, Labopin M, Beelen D, Volin L, Ehninger G, Finke J, Socié G, Schwerdtfeger R, Kröger N, Ganser A (2013) CMV serostatus still has an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the Acute Leukemia Working Party of EBMT. Blood 122:3359–3364CrossRefGoogle Scholar
  37. 37.
    Takenaka K, Nishida T, Asano-Mori Y, Oshima K, Ohashi K, Mori T, Kanamori H, Miyamura K, Kato C, Kobayashi N (2015) Cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation is associated with a reduced risk of relapse in patients with acute myeloid leukemia who survived to day 100 after transplantation: the Japan Society for Hematopoietic Cell Transplantation Transplantation-related Complication Working Group. Biol Blood Marrow Transplant 21:2008–2016CrossRefGoogle Scholar
  38. 38.
    Teira P, Battiwalla M, Ramanathan M, Barrett AJ, Ahn KW, Chen M, Green JS, Saad A, Antin JH, Savani BN (2016) Early cytomegalovirus reactivation remains associated with increased transplant related mortality in the current era: a CIBMTR analysis. Blood 127(20):2427–2438Google Scholar
  39. 39.
    Tomonari A, Takahashi S, Ooi J, Tsukada N, Konuma T, Kato S, Kasahara S, Iseki T, Yamaguchi T, Tojo A (2008) Impact of cytomegalovirus serostatus on outcome of unrelated cord blood transplantation for adults: a single-institute experience in Japan. Eur J Haematol 80:251–257CrossRefGoogle Scholar
  40. 40.
    Yoon J-H, Lee S, Kim H-J, Jeon Y-W, Lee S-E, Cho B-S, Lee D-G, Eom K-S, Kim Y-J, Min C-K (2016) Impact of cytomegalovirus reactivation on relapse and survival in patients with acute leukemia who received allogeneic hematopoietic stem cell transplantation in first remission. Oncotarget 7:17230PubMedPubMedCentralGoogle Scholar
  41. 41.
    Porter DL, Alyea EP, Antin JH, DeLima M, Estey E, Falkenburg J, Hardy N, Kroeger N, Leis J, Levine J (2010) NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on treatment of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 16:1467–1503CrossRefGoogle Scholar
  42. 42.
    Baron F, Maris MB, Sandmaier BM, Storer BE, Sorror M, Diaconescu R, Woolfrey AE, Chauncey TR, Flowers ME, Mielcarek M (2005) Graft-versus-tumor effects after allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. J Clin Oncol 23:1993–2003CrossRefGoogle Scholar
  43. 43.
    Ishaqi M, Afzal S, Dupuis A, Doyle J, Gassas A (2008) Early lymphocyte recovery post-allogeneic hematopoietic stem cell transplantation is associated with significant graft-versus-leukemia effect without increase in graft-versus-host disease in pediatric acute lymphoblastic leukemia. Bone Marrow Transplant 41:245–252CrossRefGoogle Scholar
  44. 44.
    Luo X, Chang Y, Xu L, Liu D, Liu K, Huang X (2009) The impact of graft composition on clinical outcomes in unmanipulated HLA-mismatched/haploidentical hematopoietic SCT. Bone Marrow Transplant 43:29–36CrossRefGoogle Scholar
  45. 45.
    Nemecek E, Gooley T, Woolfrey A, Carpenter P, Matthews D, Sanders J (2004) Outcome of allogeneic bone marrow transplantation for children with advanced acute myeloid leukemia. Bone Marrow Transplant 34:799–806CrossRefGoogle Scholar
  46. 46.
    Tallman MS, Dewald GW, Gandham S, Logan BR, Keating A, Lazarus HM, Litzow MR, Mehta J, Pedersen T, Pérez WS (2007) Impact of cytogenetics on outcome of matched unrelated donor hematopoietic stem cell transplantation for acute myeloid leukemia in first or second complete remission. Blood 110:409–417CrossRefGoogle Scholar
  47. 47.
    Huang X-J, Zhu H-H, Chang Y-J, Xu L-P, Liu D-H, Zhang X-H, Jiang B, Jiang Q, Jiang H, Chen Y-H (2012) The superiority of haploidentical related stem cell transplantation over chemotherapy alone as postremission treatment for patients with intermediate-or high-risk acute myeloid leukemia in first complete remission. Blood 119:5584–5590CrossRefGoogle Scholar
  48. 48.
    Tchao NK, Turka LA (2012) Lymphodepletion and homeostatic proliferation: implications for transplantation. Am J Transplant 12:1079–1090CrossRefGoogle Scholar
  49. 49.
    Lugthart G, van Ostaijen-Ten Dam MM, Jol-van der Zijde CM, van Holten TC, Kester MG, Heemskerk MH, Bredius RG, van Tol MJ, Lankester AC (2014) Early cytomegalovirus reactivation leaves a specific and dynamic imprint on the reconstituting T cell compartment long-term after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 20:655–661CrossRefGoogle Scholar
  50. 50.
    Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P, White K, Corey L, Boeckh M (2003) Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy and subclinical reactivation. Blood 102:3060–3067CrossRefGoogle Scholar
  51. 51.
    Lilleri D, Gerna G, Fornara C, Lozza L, Maccario R, Locatelli F (2006) Prospective simultaneous quantification of human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in young recipients of allogeneic hematopoietic stem cell transplants. Blood 108:1406–1412CrossRefGoogle Scholar
  52. 52.
    Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J, Goldman J, Craddock C, Moss PA (2001) Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 97:1232–1240CrossRefGoogle Scholar
  53. 53.
    Gratama JW, van Esser JW, Lamers CH, Tournay C, Löwenberg B, Bolhuis RL, Cornelissen JJ (2001) Tetramer-based quantification of cytomegalovirus (CMV)–specific CD8+ T lymphocytes in T-cell–depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 98:1358–1364CrossRefGoogle Scholar
  54. 54.
    Parkman R, Cohen G, Carter SL, Weinberg KI, Masinsin B, Guinan E, Kurtzberg J, Wagner JE, Kernan NA (2006) Successful immune reconstitution decreases leukemic relapse and improves survival in recipients of unrelated cord blood transplantation. Biol Blood Marrow Transplant 12:919–927CrossRefGoogle Scholar
  55. 55.
    Nachbaur D, Bonatti H, Oberaigner W, Eibl B, Kropshofer G, Gastl G, Nussbaumer W, Einsele H, Larcher C (2001) Survival after bone marrow transplantation from cytomegalovirus seropositive sibling donors. Lancet 358(9288):1157–1159CrossRefGoogle Scholar
  56. 56.
    Alatrash G, Ono Y, Sergeeva A, Sukhumalchandra P, Zhang M, John LSS, Yang T-H, Ruisaard K, Armistead PM, Mittendorf EA (2012) The role of antigen cross-presentation from leukemia blasts on immunity to the leukemia-associated antigen PR1. J Immunother 1997(35):309CrossRefGoogle Scholar
  57. 57.
    Hermouet S, Sutton C, Rose T, Greenblatt R, Corre I, Garand R, Neves A, Bataille R, Casey J (2003) Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma. Leukemia 17:185–195CrossRefGoogle Scholar
  58. 58.
    Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, Lopez-Vergès S, Lanier LL, Weisdorf D, Miller JS (2012) Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119:2665–2674CrossRefGoogle Scholar
  59. 59.
    Scheper W, van Dorp S, Kersting S, Pietersma F, Lindemans C, Hol S, Heijhuurs S, Sebestyen Z, Gründer C, Marcu-Malina V (2013) γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27:1328–1338CrossRefGoogle Scholar
  60. 60.
    Fletcher JM, Prentice HG, Grundy JE (1998) Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. J Immunol 161:2365–2374PubMedGoogle Scholar
  61. 61.
    Behrendt CENR, Zaia J (2010) Institution affects association between CMV seronegative graft and leukemic relapse after pediatric HCT. Biol Blood Marrow Transplant 16:133–135CrossRefGoogle Scholar
  62. 62.
    Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213CrossRefGoogle Scholar
  63. 63.
    Hadrup SR, Strindhall J, Køllgaard T, Seremet T, Johansson B, Pawelec G, thor Straten P, Wikby A (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176:2645–2653CrossRefGoogle Scholar
  64. 64.
    Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R (2007) Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42:563–570CrossRefGoogle Scholar
  65. 65.
    George B, Pati N, Gilroy N, Ratnamohan M, Huang G, Kerridge I, Hertzberg M, Gottlieb D, Bradstock K (2010) Pre-transplant cytomegalovirus (CMV) serostatus remains the most important determinant of CMV reactivation after allogeneic hematopoietic stem cell transplantation in the era of surveillance and preemptive therapy. Transpl Infect Dis 12:322–329CrossRefGoogle Scholar
  66. 66.
    Matthes-Martin S, Lion T, Aberle SW, Fritsch G, Lawitschka A, Bittner B, Frommlet F, Gadner H, Peters C (2003) Pre-emptive treatment of CMV DNAemia in paediatric stem cell transplantation: the impact of recipient and donor CMV serostatus on the incidence of CMV disease and CMV-related mortality. Bone Marrow Transplant 31:803–808CrossRefGoogle Scholar
  67. 67.
    Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR (1991) Publication bias in clinical research. Lancet 337:867–872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Lin Zhang
    • 1
  • Yan Zhu
    • 2
  • Qing Xiao
    • 1
  • Li Wang
    • 1
  • Lin Liu
    • 1
  • Xiao-Hua Luo
    • 1
    Email author
  1. 1.Department of HematologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of Hematology, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina

Personalised recommendations