Annals of Hematology

, Volume 98, Issue 1, pp 19–28 | Cite as

Glucocorticoids in multiple myeloma: past, present, and future

  • Nicholas BurwickEmail author
  • Sanjai Sharma
Review Article


Glucocorticoids are a backbone of treatment for multiple myeloma in both the upfront and relapsed/refractory setting. While glucocorticoids have single agent activity in multiple myeloma, in the modern era, they are paired with novel agents to induce high clinical response rates. On the other hand, toxicities of steroid therapy limit high dose delivery and impact patient quality of life. We provide a history of steroid use in multiple myeloma with the aim to understand how steroids have emerged and persisted in the treatment of multiple myeloma. We review mechanisms of glucocorticoid sensitivity and resistance and highlight potential future directions to evaluate steroid responsiveness. Further research in this area will aid in optimizing steroid utilization and help determine when glucocorticoid therapy may no longer benefit patients.


Multiple myeloma Glucocorticoids Dexamethasone Apoptosis Drug resistance 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353(16):1711–1723Google Scholar
  2. 2.
    Stahn C, Buttgereit F (2008) Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol 4(10):525–533Google Scholar
  3. 3.
    Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130Google Scholar
  4. 4.
    Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144Google Scholar
  5. 5.
    Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, Jarahian M, Seckinger A, Hose D, Bakiri L, Sun C, Hu Y, Ball CR, Glimm H, Sattler M, Goldschmidt H, Wagner EF, Tassone P, Jaeger D, Podar K (2017) The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia 31(7):1570–1581Google Scholar
  6. 6.
    Kuo T, McQueen A, Chen TC, Wang JC (2015) Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol 872:99–126Google Scholar
  7. 7.
    Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45(10):2163–2172Google Scholar
  8. 8.
    Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS (2016) Long-term side effects of glucocorticoids. Expert Opin Drug Saf 15(4):457–465Google Scholar
  9. 9.
    Waljee AK, Rogers MA, Lin P, Singal AG, Stein JD, Marks RM et al (2017) Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ 357:j1415Google Scholar
  10. 10.
    MASS RE (1962 February 01) A comparison of the effect of prednisone and a placebo in the treatment of multiple myeloma. Cancer Chemother Rep 16:257–259Google Scholar
  11. 11.
    Alexanian R, Haut A, Khan AU, Lane M, McKelvey EM, Migliore PJ, Stuckey WJ Jr, Wilson HE (1969) Treatment for multiple myeloma. Combination chemotherapy with different melphalan dose regimens. JAMA 208(9):1680–1685Google Scholar
  12. 12.
    Barlogie B, Smith L, Alexanian R (1984) Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 310(21):1353–1356Google Scholar
  13. 13.
    Alexanian R, Barlogie B, Dixon D (1986 July 01) High-dose glucocorticoid treatment of resistant myeloma. Ann Intern Med 105(1):8–11Google Scholar
  14. 14.
    Friedenberg WR, Kyle RA, Knospe WH, Bennett JM, Tsiatis AA, Oken MM (1991) High-dose dexamethasone for refractory or relapsing multiple myeloma. Am J Hematol 36(3):171–175Google Scholar
  15. 15.
    Alexanian R, Dimopoulos MA, Delasalle K, Barlogie B (1992) Primary dexamethasone treatment of multiple myeloma. Blood 80(4):887–890Google Scholar
  16. 16.
    Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR (2006) Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 24(3):431–436Google Scholar
  17. 17.
    Facon T, Mary JY, Pegourie B, Attal M, Renaud M, Sadoun A et al (2006) Dexamethasone-based regimens versus melphalan-prednisone for elderly multiple myeloma patients ineligible for high-dose therapy. Blood 107(4):1292–1298Google Scholar
  18. 18.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Bladé J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC, Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498Google Scholar
  19. 19.
    Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, Abonour R, Siegel DS, Katz M, Greipp PR, Eastern Cooperative Oncology Group (2010) Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 11(1):29–37Google Scholar
  20. 20.
    Gehring U, Mohit B, Tomkins GM (1972) Glucocorticoid action on hybrid clones derived from cultured myeloma and lymphoma cell lines. Proc Natl Acad Sci U S A 69(11):3124–3127Google Scholar
  21. 21.
    Sharma S, Lichtenstein A (2008) Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors. Blood 112(4):1338–1345Google Scholar
  22. 22.
    Chauhan D, Auclair D, Robinson EK, Hideshima T, Li G, Podar K, Gupta D, Richardson P, Schlossman RL, Krett N, Chen LB, Munshi NC, Anderson KC (2002) Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 21(9):1346–1358Google Scholar
  23. 23.
    Chauhan D, Pandey P, Ogata A, Teoh G, Treon S, Urashima M, Kharbanda S, Anderson KC (1997) Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene 15(7):837–843Google Scholar
  24. 24.
    Chauhan D, Pandey P, Ogata A, Teoh G, Krett N, Halgren R, Rosen S, Kufe D, Kharbanda S, Anderson K (1997) Cytochrome c-dependent and -independent induction of apoptosis in multiple myeloma cells. J Biol Chem 272(48):29995–29997Google Scholar
  25. 25.
    Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC (2001) Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem 276(27):24453–24456Google Scholar
  26. 26.
    Burwick N, Zhang MY, de la Puente P, Azab AK, Hyun TS, Ruiz-Gutierrez M, Sanchez-Bonilla M, Nakamura T, Delrow JJ, MacKay VL, Shimamura A (2017) The eIF2-alpha kinase HRI is a novel therapeutic target in multiple myeloma. Leuk Res 55:23–32Google Scholar
  27. 27.
    Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M, Gera J, Lichtenstein A (2006) Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res 66(4):2305–2313Google Scholar
  28. 28.
    Robert F, Roman W, Bramoulle A, Fellmann C, Roulston A, Shustik C et al (2014) Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma. Proc Natl Acad Sci U S A 111(37):13421–13426Google Scholar
  29. 29.
    Ishikawa H, Tanaka H, Iwato K, Tanabe O, Asaoku H, Nobuyoshi M, Yamamoto I, Kawano M, Kuramoto A (1990) Effect of glucocorticoids on the biologic activities of myeloma cells: inhibition of interleukin-1 beta osteoclast activating factor-induced bone resorption. Blood 75(3):715–720Google Scholar
  30. 30.
    Hardin J, MacLeod S, Grigorieva I, Chang R, Barlogie B, Xiao H, Epstein J (1994) Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 84(9):3063–3070Google Scholar
  31. 31.
    Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J (1995) Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol 162(2):248–255Google Scholar
  32. 32.
    Grigorieva I, Thomas X, Epstein J (1998) The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone. Exp Hematol 26(7):597–603Google Scholar
  33. 33.
    Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, Anderson KC (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87(3):1104–1112Google Scholar
  34. 34.
    McMillin DW, Negri JM, Mitsiades CS (2013) The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 12(3):217–228Google Scholar
  35. 35.
    Xu F, Gardner A, Tu Y, Michl P, Prager D, Lichtenstein A (1997) Multiple myeloma cells are protected against dexamethasone-induced apoptosis by insulin-like growth factors. Br J Haematol 97(2):429–440Google Scholar
  36. 36.
    Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Richardson P, Anderson KC (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98(2):428–435Google Scholar
  37. 37.
    Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Catley L, Tai YT, Hayashi T, Shringarpure R, Burger R, Munshi N, Ohtake Y, Saxena S, Anderson KC (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102(9):3379–3386Google Scholar
  38. 38.
    Chauhan D, Li G, Auclair D, Hideshima T, Podar K, Mitsiades N, Mitsiades C, Chen LB, Munshi N, Saxena S, Anderson KC (2004) 2-Methoxyestardiol and bortezomib/proteasome-inhibitor overcome dexamethasone-resistance in multiple myeloma cells by modulating heat shock protein-27. Apoptosis 9(2):149–155Google Scholar
  39. 39.
    Zhao JJ, Chu ZB, Hu Y, Lin J, Wang Z, Jiang M, Chen M, Wang X, Kang Y, Zhou Y, Chonghaile TN, Johncilla ME, Tai YT, Cheng JQ, Letai A, Munshi NC, Anderson KC, Carrasco RD (2015) Targeting the miR-221-222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res 75(20):4384–4397Google Scholar
  40. 40.
    Egan JB, Kortuem KM, Kurdoglu A, Izatt T, Aldrich J, Reiman R, Phillips L, Baker A, Shi CX, Schmidt J, Liang WS, Craig DW, Carpten JD, Stewart AK (2013) Extramedullary myeloma whole genome sequencing reveals novel mutations in Cereblon, proteasome subunit G2 and the glucocorticoid receptor in multi drug resistant disease. Br J Haematol 161(5):748–751Google Scholar
  41. 41.
    Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472Google Scholar
  42. 42.
    van Rhee F, Szymonifka J, Anaissie E, Nair B, Waheed S, Alsayed Y, Petty N, Shaughnessy JD, Hoering A, Crowley J, Barlogie B (2010) Total therapy 3 for multiple myeloma: prognostic implications of cumulative dosing and premature discontinuation of VTD maintenance components, bortezomib, thalidomide, and dexamethasone, relevant to all phases of therapy. Blood 116(8):1220–1227Google Scholar
  43. 43.
    Heuck CJ, Szymonifka J, Hansen E, Shaughnessy JD, Usmani SZ, van Rhee F, Anaissie E, Nair B, Waheed S, Alsayed Y, Petty N, Bailey C, Epstein J, Hoering A, Crowley J, Barlogie B (2012) Thalidomide in total therapy 2 overcomes inferior prognosis of myeloma with low expression of the glucocorticoid receptor gene NR3C1. Clin Cancer Res 18(19):5499–5506Google Scholar
  44. 44.
    Sanchez-Vega B, Gandhi V (2009) Glucocorticoid resistance in a multiple myeloma cell line is regulated by a transcription elongation block in the glucocorticoid receptor gene (NR3C1). Br J Haematol 144(6):856–864Google Scholar
  45. 45.
    Moalli PA, Pillay S, Weiner D, Leikin R, Rosen ST (1992) A mechanism of resistance to glucocorticoids in multiple myeloma: transient expression of a truncated glucocorticoid receptor mRNA. Blood 79(1):213–222Google Scholar
  46. 46.
    Sanchez-Vega B, Krett N, Rosen ST, Gandhi V (2006) Glucocorticoid receptor transcriptional isoforms and resistance in multiple myeloma cells. Mol Cancer Ther 5(12):3062–3070Google Scholar
  47. 47.
    Tissing WJ, Meijerink JP, den Boer ML, Pieters R (2003) Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 17(1):17–25Google Scholar
  48. 48.
    Bloomfield CD, Smith KA, Peterson BA, Munck A (1981) Glucocorticoid receptors in adult acute lymphoblastic leukemia. Cancer Res 41(11 Pt 2):4857–4860Google Scholar
  49. 49.
    Mulligan G, Lichter DI, Di Bacco A, Blakemore SJ, Berger A, Koenig E et al (2014) Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. Blood 123(5):632–639Google Scholar
  50. 50.
    Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman RL, Richardson P, Muller G, Stirling DI, Anderson KC (2000) Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96(9):2943–2950Google Scholar
  51. 51.
    Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP, Anderson KC (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99(12):4525–4530Google Scholar
  52. 52.
    Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, Schlossman RL, Richardson P, Ralph P, Wu L, Payvandi F, Muller G, Stirling DI, Anderson KC (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15(12):1950–1961Google Scholar
  53. 53.
    Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343(6168):301–305Google Scholar
  54. 54.
    Marke R, Havinga J, Cloos J, Demkes M, Poelmans G, Yuniati L, van Ingen Schenau D, Sonneveld E, Waanders E, Pieters R, Kuiper RP, Hoogerbrugge PM, Kaspers GJL, van Leeuwen FN, Scheijen B (2016) Tumor suppressor IKZF1 mediates glucocorticoid resistance in B-cell precursor acute lymphoblastic leukemia. Leukemia 30(7):1599–1603Google Scholar
  55. 55.
    Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076Google Scholar
  56. 56.
    Richardson PG, Weller E, Lonial S, Jakubowiak AJ, Jagannath S, Raje NS, Avigan DE, Xie W, Ghobrial IM, Schlossman RL, Mazumder A, Munshi NC, Vesole DH, Joyce R, Kaufman JL, Doss D, Warren DL, Lunde LE, Kaster S, DeLaney C, Hideshima T, Mitsiades CS, Knight R, Esseltine DL, Anderson KC (2010) Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116(5):679–686Google Scholar
  57. 57.
    Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, Sandhu I, Ganly P, Baker BW, Jackson SR, Stoppa AM, Simpson DR, Gimsing P, Palumbo A, Garderet L, Cavo M, Kumar S, Touzeau C, Buadi FK, Laubach JP, Berg DT, Lin J, di Bacco A, Hui AM, van de Velde H, Richardson PG, TOURMALINE-MM1 Study Group (2016) Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 374(17):1621–1634Google Scholar
  58. 58.
    San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M et al (2013) Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 14(11):1055–1066Google Scholar
  59. 59.
    Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Spicka I, Oriol A et al (2015) Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372(2):142–152Google Scholar
  60. 60.
    Chng WJ, Goldschmidt H, Dimopoulos MA, Moreau P, Joshua D, Palumbo A, Facon T, Ludwig H, Pour L, Niesvizky R, Oriol A, Rosiñol L, Suvorov A, Gaidano G, Pika T, Weisel K, Goranova-Marinova V, Gillenwater HH, Mohamed N, Feng S, Aggarwal S, Hájek R (2017) Carfilzomib-dexamethasone vs bortezomib-dexamethasone in relapsed or refractory multiple myeloma by cytogenetic risk in the phase 3 study ENDEAVOR. Leukemia 31(6):1368–1374Google Scholar
  61. 61.
    Kashyap T, Klebanov B, Lee MS, Landesman Y (2015) Selinexor, a selective inhibitor of nuclear export (SINE) compound, shows synergistic anti-tumor activity in combination with dexamethasone characterized by specific pattern of gene expression in multiple myeloma (MM). Blood (126:3683)Google Scholar
  62. 62.
    Chen C, Siegel D, Gutierrez M, Jacoby M, Hofmeister CC, Gabrail N, Baz R, Mau-Sorensen M, Berdeja JG, Savona M, Savoie L, Trudel S, Areethamsirikul N, Unger TJ, Rashal T, Hanke T, Kauffman M, Shacham S, Reece D (2018) Safety and efficacy of selinexor in relapsed or refractory multiple myeloma and Waldenstrom macroglobulinemia. Blood 131(8):855–863Google Scholar
  63. 63.
    Vogl DT, Dingli D, Cornell RF, Huff CA, Jagannath S, Bhutani D, Zonder J, Baz R, Nooka A, Richter J, Cole C, Vij R, Jakubowiak A, Abonour R, Schiller G, Parker TL, Costa LJ, Kaminetzky D, Hoffman JE, Yee AJ, Chari A, Siegel D, Fonseca R, van Wier S, Ahmann G, Lopez I, Kauffman M, Shacham S, Saint-Martin JR, Picklesimer CD, Choe-Juliak C, Stewart AK (2018) Selective inhibition of nuclear export with oral selinexor for treatment of relapsed or refractory multiple myeloma. J Clin Oncol 36(9):859–866Google Scholar
  64. 64.
    San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A et al (2014, 15) Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol (11):1195–1206Google Scholar
  65. 65.
    Chari A, Cho HJ, Dhadwal A, Morgan G, La L, Zarychta K et al (2017) A phase 2 study of panobinostat with lenalidomide and weekly dexamethasone in myeloma. Blood Adv 1(19):1575–1583Google Scholar
  66. 66.
    Popat R, Brown SR, Flanagan L, Hall A, Gregory W, Kishore B et al (2016) Bortezomib, thalidomide, dexamethasone, and panobinostat for patients with relapsed multiple myeloma (MUK-six): a multicentre, open-label, phase 1/2 trial. Lancet Haematol 3(12):e580Google Scholar
  67. 67.
    Ocio EM, Vilanova D, Atadja P, Maiso P, Crusoe E, Fernandez-Lazaro D, Garayoa M, San-Segundo L, Hernandez-Iglesias T, de Alava E, Shao W, Yao YM, Pandiella A, San-Miguel JF (2010) In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica 95(5):794–803Google Scholar
  68. 68.
    San-Miguel JF, Richardson PG, Gunther A, Sezer O, Siegel D, Blade J et al (2013) Phase Ib study of panobinostat and bortezomib in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol 31(29):3696–3703Google Scholar
  69. 69.
    Morris TC, Ranaghan L, Morrison J (2001) Northern Ireland Regional Haematology Group. Phase II trial of clarithromycin and pamidronate therapy in myeloma. Med Oncol 18(1):79–84Google Scholar
  70. 70.
    Musto P, Falcone A, Sanpaolo G, Bodenizza C, Carotenuto M, Carella AM (2002) Inefficacy of clarithromycin in advanced multiple myeloma: a definitive report. Haematologica 87(6):658–659Google Scholar
  71. 71.
    Rossi A, Mark T, Jayabalan D, Christos P, Zafar F, Pekle K, Pearse R, Chen-Kiang S, Coleman M, Niesvizky R (2013) BiRd (clarithromycin, lenalidomide, dexamethasone): an update on long-term lenalidomide therapy in previously untreated patients with multiple myeloma. Blood 121(11):1982–1985Google Scholar
  72. 72.
    Gay F, Rajkumar SV, Coleman M, Kumar S, Mark T, Dispenzieri A, Pearse R, Gertz MA, Leonard J, Lacy MQ, Chen-Kiang S, Roy V, Jayabalan DS, Lust JA, Witzig TE, Fonseca R, Kyle RA, Greipp PR, Stewart AK, Niesvizky R (2010) Clarithromycin (Biaxin)-lenalidomide-low-dose dexamethasone (BiRd) versus lenalidomide-low-dose dexamethasone (Rd) for newly diagnosed myeloma. Am J Hematol 85(9):664–669Google Scholar
  73. 73.
    Fost DA, Leung DY, Martin RJ, Brown EE, Szefler SJ, Spahn JD (1999) Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 103(6):1031–1035Google Scholar
  74. 74.
    Spahn JD, Fost DA, Covar R, Martin RJ, Brown EE, Szefler SJ, Leung DYM (2001) Clarithromycin potentiates glucocorticoid responsiveness in patients with asthma: results of a pilot study. Ann Allergy Asthma Immunol 87(6):501–505Google Scholar
  75. 75.
    Voorhees PM, Chen Q, Small GW, Kuhn DJ, Hunsucker SA, Nemeth JA, Orlowski RZ (2009) Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 145(4):481–490Google Scholar
  76. 76.
    Voorhees PM, Manges RF, Sonneveld P, Jagannath S, Somlo G, Krishnan A, Lentzsch S, Frank RC, Zweegman S, Wijermans PW, Orlowski RZ, Kranenburg B, Hall B, Casneuf T, Qin X, van de Velde H, Xie H, Thomas SK (2013) A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br J Haematol 161(3):357–366Google Scholar
  77. 77.
    Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, Lee AI, Podar K, Hideshima T, Rice AG, van Abbema A, Jesaitis L, Caras I, Law D, Weller E, Xie W, Richardson P, Munshi NC, Mathiot C, Avet-Loiseau H, Afar DEH, Anderson KC (2008) Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112(4):1329–1337Google Scholar
  78. 78.
    Collins SM, Bakan CE, Swartzel GD, Hofmeister CC, Efebera YA, Kwon H, Starling GC, Ciarlariello D, Bhaskar S, Briercheck EL, Hughes T, Yu J, Rice A, Benson DM (2013) Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother 62(12):1841–1849Google Scholar
  79. 79.
    Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, Fry J, Afar DEH, Singhal AK (2012) A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 120(3):552–559Google Scholar
  80. 80.
    Richardson PG, Jagannath S, Moreau P, Jakubowiak AJ, Raab MS, Facon T et al (2015) Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose-escalation study. Lancet Haematol 2(12):516Google Scholar
  81. 81.
    Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, Walter-Croneck A, Moreau P, Mateos MV, Magen H, Belch A, Reece D, Beksac M, Spencer A, Oakervee H, Orlowski RZ, Taniwaki M, Röllig C, Einsele H, Wu KL, Singhal A, San-Miguel J, Matsumoto M, Katz J, Bleickardt E, Poulart V, Anderson KC, Richardson P, ELOQUENT-2 Investigators (2015) Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med 373(7):621–631Google Scholar
  82. 82.
    Balasa B, Yun R, Belmar NA, Fox M, Chao DT, Robbins MD, Starling GC, Rice AG (2015) Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-alpha pathways. Cancer Immunol Immunother 64(1):61–73Google Scholar
  83. 83.
    Eddy JL, Krukowski K, Janusek L, Mathews HL (2014) Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol 290(1):120–130Google Scholar
  84. 84.
    Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, Mathews HL (2011) Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun 25(2):239–249Google Scholar
  85. 85.
    Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, Minnema MC, Lassen U, Krejcik J, Palumbo A, van de Donk NWCJ, Ahmadi T, Khan I, Uhlar CM, Wang J, Sasser AK, Losic N, Lisby S, Basse L, Brun N, Richardson PG (2015) Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 373(13):1207–1219Google Scholar
  86. 86.
    Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, Rabin N, Orlowski RZ, Komarnicki M, Suzuki K, Plesner T, Yoon SS, Ben Yehuda D, Richardson PG, Goldschmidt H, Reece D, Lisby S, Khokhar NZ, O'Rourke L, Chiu C, Qin X, Guckert M, Ahmadi T, Moreau P, POLLUX Investigators (2016) Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 375(14):1319–1331Google Scholar
  87. 87.
    Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, Spicka I, Hungria V, Munder M, Mateos MV, Mark TM, Qi M, Schecter J, Amin H, Qin X, Deraedt W, Ahmadi T, Spencer A, Sonneveld P, CASTOR Investigators (2016) Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med 375(8):754–766Google Scholar
  88. 88.
    Boyle EM, Petillon MO, Herbaux C, Mimouni J, Leleu X, Karlin L, et al. (2016) Daratumumab in combination with dexamethasone in resistant or refractory multiple myeloma: Primary Results of the IFM2014–04 Trial. Blood (128:2138)Google Scholar
  89. 89.
    Southorn BG, Palmer RM, Garlick PJ (1990) Acute effects of corticosterone on tissue protein synthesis and insulin-sensitivity in rats in vivo. Biochem J 272(1):187–191Google Scholar
  90. 90.
    Rannels SR, Jefferson LS (1980 Jun) Effects of glucocorticoids on muscle protein turnover in perfused rat hemicorpus. Am J Phys 238(6):564Google Scholar
  91. 91.
    Rannels SR, Rannels DE, Pegg AE, Jefferson LS (1978) Glucocorticoid effects on peptide-chain initiation in skeletal muscle and heart. Am J Phys 235(2):134Google Scholar
  92. 92.
    Bullock GR, Carter EE, Elliott P, Peters RF, Simpson P, White AM (1972) Relative changes in the function of muscle ribosomes and mitochondria during the early phase of steroid-induced catabolism. Biochem J 127(5):881–892Google Scholar
  93. 93.
    Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) Glucocorticoids oppose translational control by leucine in skeletal muscle. Am J Physiol Endocrinol Metab 279(5):1185Google Scholar
  94. 94.
    Rannels DE, Rannels SR, Li JB, Pegg AE, Morgan HE, Jefferson LS (1980) Effects of glucocorticoids on peptide chain initiation in heart and skeletal muscle. Adv Myocardiol 1:493–501Google Scholar
  95. 95.
    Liu Z, Li G, Kimball SR, Jahn LA, Barrett EJ (2004) Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle. Am J Physiol Endocrinol Metab 287(2):275Google Scholar
  96. 96.
    Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281(51):39128–39134Google Scholar
  97. 97.
    Schacke H, Docke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96(1):23–43Google Scholar
  98. 98.
    Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM (2015) Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther 152:28–41Google Scholar
  99. 99.
    Schacke H, Schottelius A, Docke WD, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K (2004) Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci U S A 101(1):227–232Google Scholar
  100. 100.
    De Bosscher K (2010) Selective glucocorticoid receptor modulators. J Steroid Biochem Mol Biol 120(2–3):96–104Google Scholar
  101. 101.
    Hudson AR, Roach SL, Higuchi RI, Phillips DP, Bissonnette RP, Lamph WW, Yen J, Li Y, Adams ME, Valdez LJ, Vassar A, Cuervo C, Kallel EA, Gharbaoui CJ, Mais DE, Miner JN, Marschke KB, Rungta D, Negro-Vilar A, Zhi L (2007) Synthesis and characterization of nonsteroidal glucocorticoid receptor modulators for multiple myeloma. J Med Chem 50(19):4699–4709Google Scholar
  102. 102.
    Clarisse D, Van Wesemael K, Tavernier J, Offner F, Beck IM, De Bosscher K (2018) Effect of combining glucocorticoids with compound A on glucocorticoid receptor responsiveness in lymphoid malignancies. PLoS One 13(5):e0197000Google Scholar
  103. 103.
    Lesovaya E, Yemelyanov A, Kirsanov K, Popa A, Belitsky G, Yakubovskaya M, Gordon LI, Rosen ST, Budunova I (2013) Combination of a selective activator of the glucocorticoid receptor compound A with a proteasome inhibitor as a novel strategy for chemotherapy of hematologic malignancies. Cell Cycle 12(1):133–144Google Scholar
  104. 104.
    Stahn C, Lowenberg M, Hommes DW, Buttgereit F (2007) Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 275(1–2):71–78Google Scholar
  105. 105.
    Harris E, Tiganescu A, Tubeuf S, Mackie SL (2015) The prediction and monitoring of toxicity associated with long-term systemic glucocorticoid therapy. Curr Rheumatol Rep 17(6):4Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.VA Puget Sound Health Care SystemSeattleUSA
  2. 2.Department of MedicineUniversity of WashingtonSeattleUSA
  3. 3.Sequoia Regional Cancer CenterVisaliaUSA

Personalised recommendations