Annals of Hematology

, Volume 97, Issue 12, pp 2353–2362 | Cite as

Novel synthetic 4-chlorobenzoyl berbamine inhibits c-Myc expression and induces apoptosis of diffuse large B cell lymphoma cells

  • Lei Zhang
  • Jiefeng Tong
  • Xin He
  • Yun Liang
  • Lei Zhu
  • Rongzhen XuEmail author
  • Xiaoying ZhaoEmail author
Original Article


C-Myc expression is associated with poor prognosis and aggressive progression of diffuse large B cell lymphoma (DLBCL), and the development of drug-like c-Myc inhibitors remains challenging. In this study, we report a novel berbamine derivative termed 4-chlorobenzoyl berbamine (CBBM) that potently induced the apoptosis of c-Myc-overexpressing DLBCL cells but spared normal blood cells. The compound showed IC50 values ranging from 1.93 to 3.89 μmol/L in DLCBL cells and exhibited a 4.75- to 9.64-fold increase in anti-tumor activity compared to berbamine. Additionally, CBBM inhibited the proliferation of the DLBCL line OCI-Ly3 cells through G0/G1 cell-cycle arrest and induced apoptosis. Further studies have shown that CBBM treatment leads to the proteasome-dependent degradation of c-Myc protein in OCI-Ly3 cells. Interestingly, we found that the inhibitory effect of CBBM was positively correlated with basal levels of CaMKIIγ, which is a key inducer of c-Myc expression in DLBCL cells. We also observed that CBBM inhibits the JAK2/STAT3 pathway, leading to reduced c-Myc transcription. Collectively, these findings suggest that CBBM could be a promising lead compound for treatment of c-Myc-driven DLBCL.


DLBCL c-Myc Small molecule inhibitor 4-Chlorobenzoyl berbamine 



This work was supported, in part, by Zhejiang Provincial Natural Science Foundation of China (Y18H160083).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Al-Hamadani M, Habermann TM, Cerhan JR, Macon WR, Maurer MJ, Go RS (2015) Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: a longitudinal analysis of the National Cancer Data Base from 1998 to 2011. Am J Hematol 90(9):790–795CrossRefGoogle Scholar
  2. 2.
    Smith A, Howell D, Patmore R, Jack A, Roman E (2011) Incidence of haematological malignancy by sub-type: a report from the haematological malignancy research network. Br J Cancer 105(11):1684–1692CrossRefGoogle Scholar
  3. 3.
    Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2(10):764–776CrossRefGoogle Scholar
  4. 4.
    Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18(3):717–726CrossRefGoogle Scholar
  5. 5.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827CrossRefGoogle Scholar
  6. 6.
    Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990CrossRefGoogle Scholar
  7. 7.
    Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. CSH Perspect Med. CrossRefGoogle Scholar
  8. 8.
    Valera A, López-Guillermo A, Cardesa-Salzmann T, Climent F, González-Barca E, Mercadal S, Espinosa I, Novelli S, Briones J, Mate JL, Salamero O, Sancho JM, Arenillas L, Serrano S, Erill N, Martínez D, Castillo P, Rovira J, Martínez A, Campo E, Colomo L, Grup per l’Estudi dels Limfomes de Catalunya i Balears (GELCAB) (2013) MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica 98(10):1554–1562CrossRefGoogle Scholar
  9. 9.
    Colosia A, Njue A, Trask PC, Olivares R, Khan S, Abbe A, Police R, Wang J, Ruiz-Soto R, Kaye JA, Awan F (2014) Clinical efficacy and safety in relapsed/refractory diffuse large B-cell lymphoma: a systematic literature review. Clin Lymphoma Myeloma Leuk 14(5):343–355CrossRefGoogle Scholar
  10. 10.
    Esteve-Arenys A, Valero JG, Chamorro-Jorganes A, Gonzalez D, Rodriguez V, Dlouhy I, Salaverria I, Campo E, Colomer D, Martinez A, Rymkiewicz G, Perez-Galan P, Lopez-Guillermo A, Roue G (2018) The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene 37:1830–1844. CrossRefGoogle Scholar
  11. 11.
    Mottok A, Gascoyne RD (2015) Bromodomain inhibition in diffuse large B-cell lymphoma—giving MYC a brake. Clin Cancer Res 21(1):4–6CrossRefGoogle Scholar
  12. 12.
    Liang Y, Li X, He X, Qiu X, Jin XL, Zhao XY, Xu RZ (2016) Polyphyllin I induces cell cycle arrest and apoptosis in human myeloma cells via modulating beta-catenin signaling pathway. Eur J Haematol 97(4):371–378CrossRefGoogle Scholar
  13. 13.
    Gu Y, Chen T, Meng ZP, Gan YC, Xu XH, Lou GY, Li HZ, Gan XX, Zhou H, Tang JF, Xu GB, Huang LS, Zhang XH, Fang YM, Wang K, Zheng S, Huang WD, Xu RZ (2012) CaMKII gamma, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood 120(24):4829–4839CrossRefGoogle Scholar
  14. 14.
    Gu Y, Zhang J, Ma X, Kim BW, Wang H, Li J, Pan Y, Xu Y, Ding L, Yang L, Guo C, Wu X, Wu J, Wu K, Gan XX, Li G, Li L, Forman SJ, Chan WC, Xu RZ, Huang WD (2017) Stabilization of the c-Myc protein by CAMKIIgamma promotes T cell lymphoma. Cancer Cell 32(1):115–128CrossRefGoogle Scholar
  15. 15.
    Gu Y, Zheng W, Zhang J, Gan XX, Ma X, Meng ZP, Chen T, Lu XY, Wu ZX, Huang WD, Xu R (2016) Aberrant activation of CaMKIIgamma accelerates chronic myeloid leukemia blast crisis. Leukemia 30(6):1282–1289CrossRefGoogle Scholar
  16. 16.
    Jiang XD, Wu ZX, Lu XY, Zhang XZ, Yu QF, Gan YC, Wu BW, Xu Y, Zheng WW, Zhang L, Xu F, Ma A, Gan XX, Huang S, Yu XF, Huang WD, Xu RZ (2017) Activation of CaMKIIγ potentiates T-cell acute lymphoblastic leukemia leukemogenesis via phosphorylating FOXO3a. Oncotarget 8(43):75050–75064PubMedPubMedCentralGoogle Scholar
  17. 17.
    Liang Y, He X, Li X, Zhang XZ, Zhang XH, Zhang L, Qiu X, Zhao XY, Xu RZ (2016) 4-Chlorbenzoyl berbamine, a novel derivative of the natural product berbamine, potently inhibits the growth of human myeloma cells by modulating the NF-κB and JNK signalling pathways. Cancer Investig 34(10):496–505CrossRefGoogle Scholar
  18. 18.
    Meng ZP, Li T, Ma X, Wang X, Ness CV, Gan YC, Zhou H, Tang JF, Lou GY, Wang YF, Wu J, Yen Y, Xu RZ, Huang WD (2013) Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca(2)(+)/calmodulin-dependent protein kinase II. Mol Cancer Ther 12(10):2067–2077CrossRefGoogle Scholar
  19. 19.
    Nam S, Xie J, Perkins A, Ma Y, Yang F, Wu J, Wang Y, Xu RZ, Wd H, Horne DA, Jove R (2012) Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol Oncol 6(5):484–493CrossRefGoogle Scholar
  20. 20.
    Gupta M, Han JJ, Stenson M, Maurer M, Wellik L, Hu GZ, Ziesmer S, Dogan A, Witzig TE (2012) Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood 119(12):2844–2853CrossRefGoogle Scholar
  21. 21.
    Dessauge F, Hilaly S, Baumgartner M, Blumen B, Werling D, Langsley G (2005) c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene 24(6):1075–1083CrossRefGoogle Scholar
  22. 22.
    Petrich AM, Nabhan C, Smith SM (2014) MYC-associated and double-hit lymphomas: a review of pathobiology, prognosis, and therapeutic approaches. Cancer 120(24):3884–3895CrossRefGoogle Scholar
  23. 23.
    Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63CrossRefGoogle Scholar
  24. 24.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390CrossRefGoogle Scholar
  25. 25.
    Jung MS, Russell AJ, Liu B, George J, Liu PY, Liu T, DeFazio A, Bowtell DDL, Oberthuer A, London WB, Fletcher JI, Haber M, Norris MD, Henderson MJ (2017) A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res 77(4):971–981CrossRefGoogle Scholar
  26. 26.
    Son SM, Ha SY, Yoo HY, Oh D, Kim SJ, Kim WS, Ko YH (2017) Prognostic impact of MYC protein expression in central nervous system diffuse large B-cell lymphoma: comparison with MYC rearrangement and MYC mRNA expression. Mod Pathol 30(1):4–14CrossRefGoogle Scholar
  27. 27.
    Yang A, Qin S, Schulte BA, Ethier SP, Tew KD, Wang GY (2017) MYC inhibition depletes Cancer stem-like cells in triple-negative breast Cancer. Cancer Res 77(23):6641–6650CrossRefGoogle Scholar
  28. 28.
    Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz G, Zhang D, Yao J, Czech M, Goode BL, Michael G, Rosenfeld MG, Glass CK (2011) Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470(7334):414–418CrossRefGoogle Scholar
  29. 29.
    Ma X, Meng Z, Jin L, Xiao Z, Wang X, Tsark WM, Ding L, Gu Y, Zhang J, Kim B, He M, Gan X, Shively JE, Yu H, Xu R, Huang W (2017) CAMK2gamma in intestinal epithelial cells modulates colitis-associated colorectal carcinogenesis via enhancing STAT3 activation. Oncogene 36(28):4060–4071CrossRefGoogle Scholar
  30. 30.
    Si J, Collins SJ (2008) Activated Ca2+/calmodulin-dependent protein kinase II is a critical regulator of myeloid leukemia cell proliferation. Cancer Res 68(10):3733–3742CrossRefGoogle Scholar
  31. 31.
    Chisholm KM, Bangs CD, Bacchi CE, Molina-Kirsch H, Cherry A, Natkunam Y (2015) Expression profiles of MYC protein and MYC gene rearrangement in lymphomas. Am J Surg Pathol 39(3):294–303CrossRefGoogle Scholar
  32. 32.
    Si J, Collins SJ (2008) Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res 68(10):3733–3742CrossRefGoogle Scholar
  33. 33.
    Huang L, Liu D, Wang N, Li SP, Tang YT, Wu J, Hao LT, Luo H, Hu XL, Sheng LS, Zhu LJ, Wang D, Luo Y, Shang Z, Xiao M, Mao X, Zhou KG, Cao LH, Dong LL, Zheng XC, Sui PP, He JL, Mo SL, Yan J, Ao QL, Qiu LG, Zhou HS, Liu QF, Zhang HY, Li JY, Jin J, Fu L, Zhao WL, Chen JP, Du X, Qing GL, Liu HD, Liu X, Huang G, Ma D, Zhou JF, Wang QF (2018) Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia. Cell Res 28(2):172–186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of HematologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
  2. 2.Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education)Zhejiang UniversityHangzhouChina

Personalised recommendations