Advertisement

Annals of Hematology

, Volume 97, Issue 9, pp 1527–1534 | Cite as

Copper deficiency anemia: review article

  • Zin W. Myint
  • Thein H. Oo
  • Kyaw Z. Thein
  • Aung M. Tun
  • Hayder Saeed
Review Article

Abstract

Copper is a crucial micronutrient needed by animals and humans for proper organ function and metabolic processes such as hemoglobin synthesis, as a neurotransmitter, for iron oxidation, cellular respiration, and antioxidant defense peptide amidation, and in the formation of pigments and connective tissue. Multiple factors, either hereditary or acquired, contribute to the increase in copper deficiency seen clinically over the past decades. The uptake of dietary copper into intestinal cells is via the Ctr1 transporter, located at the apical membrane aspect of intestinal cells and in most tissues. Copper is excreted from enterocytes into the blood via the Cu-ATPase, ATP7A, by trafficking the transporter towards the basolateral membrane. Zinc is another important micronutrient in animals and humans. Although zinc absorption may occur by direct interaction with the Ctr1 transporter, its absorption is slightly different. Copper deficiency affects physiologic systems such as bone marrow hematopoiesis, optic nerve function, and the nervous system in general. Detailed pathophysiology and its related diseases are explained in this manuscript. Diagnosis is made by measuring serum copper, serum ceruloplasmin, and 24-h urine copper levels. Copper deficiency anemia is treated with oral or intravenous copper replacement in the form of copper gluconate, copper sulfate, or copper chloride. Hematological manifestations are fully reversible with copper supplementation over a 4- to 12-week period. However, neurological manifestations are only partially reversible with copper supplementation.

Keywords

Copper Anemia Neuropathy Optic disease Zinc Gastric-by-pass Myelodysplastic anemia 

Notes

Acknowledgements

The authors thank Heather N. Russell-Simmons and the Markey Cancer Center Research Communications Office for assistance with manuscript preparation.

Compliance with ethical standards

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Balamurugan K, Schaffner W (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta 1763(7):737–746CrossRefPubMedGoogle Scholar
  2. 2.
    Prohaska JR (2012) Copper. In: Present knowledge in nutrition. Wiley-Blackwell, pp 540–553Google Scholar
  3. 3.
    Chambers A, Krewski D, Plunkett L (2010) An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev 13(7–8):546–578CrossRefPubMedGoogle Scholar
  4. 4.
    Bhutta ZA, Nizami SQ, Isani Z (1999) Zinc supplementation in malnourished children with persistent diarrhea in Pakistan. Pediatrics 103(4):e42CrossRefPubMedGoogle Scholar
  5. 5.
    USDA National Nutrient Database for Standard Reference, Release 28, Copper Cu(mcg) content of selected foods per common measure. Accessed October 28, 2015Google Scholar
  6. 6.
    Nose Y, Rees EM, Thiele DJ (2006) Structure of the Ctr1 copper trans’PORE’ter reveals novel architecture. Trends Biochem Sci 31(11):604–607CrossRefPubMedGoogle Scholar
  7. 7.
    Crampton RF, Matthews DM, Poisner R (1965) Observations on the mechanism of absorption of copper by the small intestine. J Physiol 178:111–126CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Evans GW (1976) LeBlane FN: copper binding protein in rat intestine: amino acid composition and function. Nutr Rept Intern 14:281Google Scholar
  9. 9.
    Monty JF, Llanos RM, Mercer JF, Kramer DR (2005) Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mice. J Nutr 135(12):2762–2766CrossRefPubMedGoogle Scholar
  10. 10.
    Ravia JJ, Stephen RM, Ghishan FK, Collins JF (2005) Menkes copper ATPase (Atp7a) is a novel metal-responsive gene in rat duodenum, and immunoreactive protein is present on brush-border and basolateral membrane domains. J Biol Chem 280(43):36221–36227CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mason KE (1979) A conspectus of research on copper metabolism and requirements of man. J Nutr 109(11):1979–2066CrossRefPubMedGoogle Scholar
  12. 12.
    Cox DW, Roberts EA. Wilson disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. 8th ed.: Saunders; 2006:P 1601Google Scholar
  13. 13.
    Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763(7):747–758CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cobine PA, Pierrel F, Winge DR (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim Biophys Acta 1763(7):759–772CrossRefPubMedGoogle Scholar
  15. 15.
    Bohm M, Pronicka E, Karczmarewicz E (2006) Retrospective multicentric study of 180 children with cytochrome C oxidase deficiency. Pediatr Res 59:21–26CrossRefPubMedGoogle Scholar
  16. 16.
    Turnland JR (2000) Copper. In: Modern nutrition in health and disease. Lippincott, PhiladelphiaGoogle Scholar
  17. 17.
    Cartwright GE, Wintrobe MM (1964) Copper metabolism in normal subjects. Am J Clin Nutr 14:224–232CrossRefPubMedGoogle Scholar
  18. 18.
    King JCKC (2000) Modern nutrition in health and disease. Lippincott, PhiladelphiaGoogle Scholar
  19. 19.
    Sandstrom B (1997) Bioavailability of zinc. Eur J Clin Nutr 51(Suppl 1):S17–S19PubMedGoogle Scholar
  20. 20.
    Weigand E (1983) Absorption of trace elements: zinc. ​Int J Vitam Nutr Res Suppl 25:67–81PubMedGoogle Scholar
  21. 21.
    Cousins RJ, Lee-Ambrose LM (1992) Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J Nutr 122(1):56–64CrossRefPubMedGoogle Scholar
  22. 22.
    Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227CrossRefPubMedGoogle Scholar
  23. 23.
    Douglass CW, Shih A, Ostry L (2002) Will there be a need for complete dentures in the United States in 2020? J Prosthet Dent 87(1):5–8CrossRefPubMedGoogle Scholar
  24. 24.
    Shah NB GM, Holeva KT, Inventor; Richarson-Vicks, Inc, assignee. Denture stabilizing zinc and strontium salts of AVE/MA copolymer. US patent 4758630. July 19, 1988, 1988Google Scholar
  25. 25.
    Wiley JS, Moore MR. Heme biosynthesis and its disorders: porphrias and sideroblastic anemias. In: Hoffman R, Benz EJ Jr, Shattil SJ, eds. Hematology: basic principles and practice. 5th ed. Philadephila (PA): Churchill Livingstone Elsevier; 2009:P.488Google Scholar
  26. 26.
    Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabetic Federation. Diabet Med 23(5):469–480CrossRefPubMedGoogle Scholar
  27. 27.
    Livingston EH (2007) Bariatric surgery in the new millennium. Arch Surg 142(10):919–922CrossRefPubMedGoogle Scholar
  28. 28.
    Bernert PC, Ciangura C, Coupaye M, Czernichow S, Bouillot JL, Basdevant A (2007) Nutritional deficiency after gastric bypass: diagnosis, prevention and treatment. Diabetes Metab 33(1):13–24CrossRefGoogle Scholar
  29. 29.
    Alvarez-Leite JI (2004) Nutrient deficiencies secondary to bariatric surgery. Curr Opin Clin Nutr Metab Care 7(5):569–575CrossRefPubMedGoogle Scholar
  30. 30.
    Haddad AS, Subbiah V, Lichtin AE, Theil KS, Maciejewski JP (2008) Hypocupremia and bone marrow failure. Haematologica 93(1):e1–e5CrossRefPubMedGoogle Scholar
  31. 31.
    Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF (2009) Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity (Silver Spring, Md) 17(4):827–831CrossRefGoogle Scholar
  32. 32.
    Gletsu-Miller N, Broderius M, Frediani JK, Zhao VM, Griffith DP, Davis SS, Sweeney JF, Lin E, Prohaska JR, Ziegler TR (2012) Incidence and prevalence of copper deficiency following Roux-en-y gastric bypass surgery. Int J Obes (Lond) 36(3):328–335CrossRefGoogle Scholar
  33. 33.
    Ernst B, Thurnheer M, Schultes B (2009) Copper deficiency after gastric bypass surgery. Obesity (Silver Spring, Md). 17(11):1980–1981CrossRefGoogle Scholar
  34. 34.
    Atkinson RL, Dahms WT, Bray GA, Jacob R, Sandstead HH (1978) Plasma zinc and copper in obesity and after intestinal bypass. Ann Intern Med 89(4):491–493CrossRefPubMedGoogle Scholar
  35. 35.
    Faber J, Randolph JG, Robbins S, Smith JC (1978) Zinc and copper status in young patients following jejunoileal bypass. J Surg Res 24(2):83–86CrossRefPubMedGoogle Scholar
  36. 36.
    Halfdanarson TR, Kumar N, Li CY, Phyliky RL, Hogan WJ (2008) Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 80(6):523–531CrossRefPubMedGoogle Scholar
  37. 37.
    de Luis DA, Pacheco D, Izaola O, Terroba MC, Cuellar L, Martin T (2008) Clinical results and nutritional consequences of biliopancreatic diversion: three years of follow-up. Ann Nutr Metab 53(3–4):234–239CrossRefPubMedGoogle Scholar
  38. 38.
    Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257(6):869–881CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Prodan CI, Bottomley SS, Vincent AS, Cowan LD, Meerveld BGV, Holland NR, Lind SE (2009) Copper deficiency after gastric surgery: a reason for caution. Am J Med Sci 337(4):256–258CrossRefPubMedGoogle Scholar
  40. 40.
    Fleming CR, Hodges RE, Hurley LS (1976) A prospective study of serum copper and zinc levels in patients receiving total parenteral nutrition. Amer J Clin Nutr 29:70–77CrossRefPubMedGoogle Scholar
  41. 41.
    Dembinski K, Gargasz AE, Dabrow S, Rodriguez L (2012) Three distinct cases of copper deficiency in hospitalized pediatric patients. Clin Pediatr 51(8):759–762CrossRefGoogle Scholar
  42. 42.
    Sternlieb I, Janowitz HD (1964) Absorption of copper in malabsorption syndromes. J Clin Invest 43:1049–1055CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jaiser SR, Winston GP (2010 Jun) Copper deficiency myelopathy. J Neurol 257(6):869–881CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ito Y, Ando T, Nabeshima T (2005) Latent copper deficiency in patients receiving low-copper enteral nutrition for a prolonged period. JPEN J Parenter Enteral Nutr 29:360–366CrossRefPubMedGoogle Scholar
  45. 45.
    Gabreyes AA, Abbasi HN, Forbes KP, McQuaker G, Duncan A, Morrison I (2013) Hypocupremia associated cytopenia and myelopathy: a national retrospective review. Eur J Haematol 90(1):1–9CrossRefPubMedGoogle Scholar
  46. 46.
    Huff JD, Keung YK, Thakuri M, Beaty MW, Hurd DD, Owen J, Molnár I (2007) Copper deficiency causes reversible myelodysplasia. Am J Hematol 82(7):625–630CrossRefPubMedGoogle Scholar
  47. 47.
    Halfdanarson TR. Kumar N, Li CY. Hematological manifestions of copper deficiency: a retrospective review. Eur J Hematol ISSN 0902-4441Google Scholar
  48. 48.
    Green R (2012) Anemias beyond B12 and iron deficiency: the buzz about other B’s, elementary, and nonelementary problems. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program 2012:492–498Google Scholar
  49. 49.
    Willis MS, Monaghan SA, Miller ML, McKenna RW, Perkins WD, Levinson BS, Bhushan V, Kroft SH (2005) Zinc-induced copper deficiency: a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 123(1):125–131CrossRefPubMedGoogle Scholar
  50. 50.
    Williams DM, Loukopoulos D, Lee GR (1976) Role of copper in mitochondrial iron metabolism. Blood 48:77–85PubMedGoogle Scholar
  51. 51.
    Deloughery TG (2014) Microcytic anemia. N Engl J Med 371:1324–1331CrossRefPubMedGoogle Scholar
  52. 52.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797s–811sPubMedGoogle Scholar
  53. 53.
    Ames BN, Atamna H, Killilea DW (2005) Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol Asp Med 26(4–5):363–378CrossRefGoogle Scholar
  54. 54.
    Bleackley MR, Wong AY, Hudson DM, Wu CH, Macgillivray RT (2009) Blood iron homeostasis: newly discovered proteins and iron imbalance. Transfus Med Rev 23(2):103–123CrossRefPubMedGoogle Scholar
  55. 55.
    Peled T, Glukhman E, Hasson N, Adi S, Assor H, Yudin D, Landor C, Mandel J, Landau E, Prus E, Nagler A, Fibach E (2005) Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol 33(10):1092–1100CrossRefPubMedGoogle Scholar
  56. 56.
    Schleper B, Stuerenburg HJ (2001) Copper deficiency-associated myelopathy in a 46-year-old woman. J Neurol 248(8):705–706CrossRefPubMedGoogle Scholar
  57. 57.
    Gregg XT, Reddy V, Prchal JT (2002) Copper deficiency masquerading as myelodysplastic syndrome. Blood 100(4):1493–1495CrossRefPubMedGoogle Scholar
  58. 58.
    Mechanick KI, Youdim A, Jones DB (2013) Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient 2013 update: cosponsored by American Society for Metabolic & Bariatric Surgery. Obestiy 21(01):S-27Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zin W. Myint
    • 1
    • 2
  • Thein H. Oo
    • 3
  • Kyaw Z. Thein
    • 4
  • Aung M. Tun
    • 5
  • Hayder Saeed
    • 1
    • 2
  1. 1.Division of Hematology and Blood and Marrow TransplantUniversity of KentuckyLexingtonUSA
  2. 2.Markey Cancer CenterUniversity of KentuckyLexingtonUSA
  3. 3.Division of HematologyUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  4. 4.Division of HematologyTexas Tech University of Health Sciences CenterLubbockUSA
  5. 5.Division of HematologyBrooklyn Hospital CenterNew YorkUSA

Personalised recommendations