Advertisement

Annals of Hematology

, Volume 97, Issue 10, pp 1909–1917 | Cite as

Red blood cells metabolome changes upon treatment with different X-ray irradiation doses

  • Fabio Baroni
  • Chiara Marraccini
  • Lucia Merolle
  • Vando Piccagli
  • Daniele Lambertini
  • Mauro Iori
  • Tommaso Fasano
  • Emanuela Casali
  • Alberto Spisni
  • Roberto Baricchi
  • Thelma A. Pertinhez
Original Article
  • 144 Downloads

Abstract

The upholding of red blood cells (RBC) quality and the removal of leukocytes are two essential issues in transfusion therapy. Leukodepletion provides optimum results, nonetheless there are cases where irradiation is recommended for some groups of hematological patients such as the ones with chronic graft-vs-host disease, congenital cellular immunodeficiency, and hematopoietic stem cell transplant recipients. The European guidelines suggest irradiation doses from 25 to 50 Gray (Gγ). We evaluated the effect of different prescribed doses (15 to 50 Gγ) of X-ray irradiation on fresh leukodepleted RBCs bags using a novel protocol that provides a controlled irradiation. Biochemical assays integrated with RBCs metabolome profile, assessed by nuclear magnetic resonance spectroscopy, were performed on RBC units supernatant, during 14 days storage. Metabolome analysis evidenced a direct correlation between concentration increase of three metabolites, glycine, glutamine and creatine, and irradiation dose. Higher doses (35 and 50 Gγ) effect on RBC mean corpuscular volume, hemolysis, and ammonia concentration are considerable after 7 and 14 days of storage. Our data show that irradiation with 50 Gγ should be avoided and we suggest that 35 Gγ should be the upper limit. Moreover, we suggest for leukodepleted RBCs units the irradiation with the prescribed dose of 15 Gγ, value at center of bag, and ranging between 13.35–15 Gγ, measured over the entire bag volume, may guarantee the same benefits of a 25 Gγ dose assuring, in addition, a better quality of RBCs.

Keywords

NMR metabolomics Ammonium X-ray irradiation RBC metabolome Bone marrow transplant Leukemia 

Abbreviations

BMT

Bone marrow transplant

GvHD

Graft-versus-host disease

MCV

Mean corpuscular volume

NMR

Nuclear magnetic resonance

ROS

Reactive oxygen species

RBC

Red blood cell

Notes

Compliance with ethical standards

The study was approved by the Arcispedale Santa Maria Nuova (ASMN)-IRCCS Ethics Committee on July 1, 2016.

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of informed consent

Informed consent was obtained from all patients for being included in the study.

Supplementary material

277_2018_3386_MOESM1_ESM.docx (127 kb)
ESM 1 (DOCX 127 kb)

References

  1. 1.
    Leitman SF, Holland PV (1985) Irradiation of blood products. Indications and guidelines. Transfusion 25:293–300CrossRefGoogle Scholar
  2. 2.
    Janatpour K, Denning L, Nelson K, Betlach B, Mackenzie M, Holland P (2005) Comparison of X-ray vs gamma irradiation of CPDA-1 red cells. Vox Sang 89:215–219.  https://doi.org/10.1111/j.1423-0410.2005.00699.x CrossRefGoogle Scholar
  3. 3.
    Goker H, Haznedaroglu IC, Chao NJ (2001) Acute graft-vs-host disease: pathobiology and management. Exp Hematol 29:259–277CrossRefGoogle Scholar
  4. 4.
    Lee SJ, Vogelsang G, Flowers ME (2003) Chronic graft-versus-host disease. Biol Blood Marrow Transplant 9:215–233.  https://doi.org/10.1053/bbmt.2003.50026 CrossRefGoogle Scholar
  5. 5.
    Anderson K (2003) Broadening the spectrum of patient groups at risk for transfusion-associated GVHD: implications for universal irradiation of cellular blood components. Transfusion 43:1652–1654CrossRefGoogle Scholar
  6. 6.
    Qadri SM, Chen D, Schubert P, Devine DV, Sheffield WP (2017) Early γ-irradiation and subsequent storage of red cells in SAG-M additive solution potentiate energy imbalance, microvesiculation and susceptibility to stress-induced apoptotic cell death. Vox Sang 112:480–483.  https://doi.org/10.1111/vox.12518 CrossRefGoogle Scholar
  7. 7.
    Szweda-Lewandowska Z, Krokosz A, Gonciarz M, Zajeczkowska W, Puchała M. (2003) Damage to human erythrocytes by radiation-generated HO• radicals: molecular changes in erythrocytes membranes. Free Rad Res 37:1137–1143, Damage to Human Erythrocytes by Radiation-generated HO• Radicals: Molecular Changes in Erythrocyte Membranes.CrossRefGoogle Scholar
  8. 8.
    Abuja PM, Albertini R (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306:1–17CrossRefGoogle Scholar
  9. 9.
    Patel RM, Roback JD, Uppal K, Yu T, Jones DP, Josephson CD (2015) Metabolomics profile comparisons of irradiated and nonirradiated stored donor red blood cells. Transfusion 55:544–552.  https://doi.org/10.1111/trf.12884 CrossRefGoogle Scholar
  10. 10.
    Winter KM, Johnson L, Kwok M, Reid S, Alarimi Z, Wong JK, Dennington PM, Marks DC (2015) Understanding the effects of gamma-irradiation on potassium levels in red cell concentrates stored in SAG-M for neonatal red cell transfusion. Vox Sang 108:141–150.  https://doi.org/10.1111/vox.12194 CrossRefGoogle Scholar
  11. 11.
    Zimmermann R, Wintzheimer S, Weisbach V, Strobel J, Zingsem J, Eckstein R (2009) Influence of prestorage leukoreduction and subsequent irradiation on in vitro red blood cell (RBC) storage variables of RBCs in additive solution saline-adenine-glucose-mannitol. Transfusion 49:75–80.  https://doi.org/10.1111/j.1537-2995.2008.01920.x CrossRefGoogle Scholar
  12. 12.
    Moreira OC, Oliveira VH, Benedicto LB, Nogueira CM, Mignaco JA, Fontes CF, Barbosa LA (2008) Effects of γ-irradiation on the membrane ATPases of human erythrocytes from transfusional blood concentrates. Ann Hemat 87:113–119.  https://doi.org/10.1007/s00277-007-0378-3 CrossRefGoogle Scholar
  13. 13.
    Maia GAS, Cortes VF, Ribeiro RIMDA, Mignaco JA, de Lima Santos H, Fontes CF, Barbosa LA (2014) Could Na, K-ATPase play a role in potassium leakage from irradiated erythrocytes? Clin Chim Acta 433:58–61.  https://doi.org/10.1016/j.cca.2014.02.025 CrossRefGoogle Scholar
  14. 14.
    de Oliveira GC, Maia GA, Cortes VF, Santos Hde L, Moreira LM, Barbosa LA (2013) The effect of γ-radiation on the hemoglobin of stored red blood cells: the involvement of oxidative stress in hemoglobin conformation. Ann Hemat 92:899–906.  https://doi.org/10.1007/s00277-013-1719-z CrossRefGoogle Scholar
  15. 15.
    Maia GAS, de Oliveira Renó C, Medina JM, Silveira AB, Mignaco JA, Atella GC, Cortes VF, Barbosa LA, Santos H de L (2014) The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hemat 93:753–760.  https://doi.org/10.1007/s00277-013-1944-5 CrossRefGoogle Scholar
  16. 16.
    Leitner GC, Neuhauser M, Weigel G, Kurze S, Fischer MB, Höcker P (2001) Altered intracellular purine nucleotides in gamma-irradiated red blood cell concentrates. Vox Sang 81:113–118CrossRefGoogle Scholar
  17. 17.
    Adams F, Bellairs G, Bird AR, Oguntibeju OO (2015) Biochemical storage lesions occurring in non irradiated and irradiated red blood cells: a brief review. Biomed Res Int 2015:968302.  https://doi.org/10.1155/2015/968302 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xu D, Peng M, Zhang Z, Dong G, Zhang Y, Yu H (2012) Study of damage to red blood cells exposed to different doses of γ-ray irradiation. Blood Transfus 10:321–330.  https://doi.org/10.2450/2012.0076-11. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Al Zahrani K, Al-Swaidan HA (2017) Nanostructural changes in the cell membrane of gamma-irradiated red blood cells. Indian J Hematol Blood Transfus 33:109–115.  https://doi.org/10.1007/s12288-016-0657-z CrossRefGoogle Scholar
  20. 20.
    Krokosz A, Koziczak R, Gonciarz M, Szweda-Lewandowska Z. (2006) Study of the effect of dose-rate on radiation-induced damage to human erythrocytes. Radiation Phys Chem 75:98–105. doi.org/10.1016/j.radphyschem.2005.03.013.CrossRefGoogle Scholar
  21. 21.
    Bontadini A, Tazzari TL, Manfroi S, Tassi C, Conte R (2002) Apoptosis in leukodepleted packed red blood cells. Vox Sang 83:35–41CrossRefGoogle Scholar
  22. 22.
    Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell discrimination with 7-amino actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 13:204–208CrossRefGoogle Scholar
  23. 23.
    Chan LL-Y, McCulley KJ, Kessel SL (2017) Assessment of cell viability with single-, dual-, and multi-staining methods using image cytometry. In Cell Viability Assays, Chap 3:27–41CrossRefGoogle Scholar
  24. 24.
    Dodd B, Vetter RJ (2009) Replacement of 137Cs irradiators with x-ray irradiators. Health Phys 96:S27–S30.  https://doi.org/10.1097/01.HP.0000334555.78657.bc CrossRefGoogle Scholar
  25. 25.
    Vandana S, Shaiju VS, Sharma SD, Mhatre S, Shinde S, Chourasiya G, Mayya YS (2011) Dosimetry of gamma chamber blood irradiator using Gafchromic EBT film. Appl Radiat Isot 69:130–135.  https://doi.org/10.1016/j.apradiso.2010.08.018 CrossRefGoogle Scholar
  26. 26.
    Han V, Serrano K, Devine DV (2010) A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang 98:116–123.  https://doi.org/10.1111/j.1423-0410.2009.01249.x CrossRefGoogle Scholar
  27. 27.
    Pertinhez TA, Casali E, Lindner L, Spisni A, Baricchi R, Berni P (2014) Biochemical assessment of red blood cells during storage by (1)H nuclear magnetic resonance spectroscopy. Identification of a biomarker of their level of protection against oxidative stress. Blood Transfus 12:548–556.  https://doi.org/10.2450/2014.0305-13. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pertinhez TA, Casali E, Zambianchi L, Spisni A, Baricchi R (2018) Statistical validation of 1H NMR protocol vs standard biochemical assay in quality control of RBC packed units. J Pharm Biomed Anal 147:485–492.  https://doi.org/10.1016/j.jpba.2017.06.024 CrossRefGoogle Scholar
  29. 29.
    Pelszynski MM, Moroff G, Luban NL, Taylor BJ, Quinones RR (1994) Effect of X-ray irradiation of red blood cell units on T-cell inactivation as assessed by limiting dilution analysis: implications for preventing transfusion-associated graft-versus-host disease. Blood 83:1683–1689Google Scholar
  30. 30.
    Akahoshi M, Takanashi M, Masuda M, Yamashita H, Hidano A, Hasegawa K, Kasajima T, Shimizu M, Motoji T, Oshimi K et al (1992) A case of transfusion-associated graft-versus-host disease not prevented by white cell-reduction filters. Transfusion 32(2):169–172CrossRefGoogle Scholar
  31. 31.
    Luban NL, Drothler D, Moroff G, Quinones R (2000) Irradiation of platelet components: inhibition of lymphocyte proliferation assessed by limiting-dilution analysis. Transfusion 40(3):348–352CrossRefGoogle Scholar
  32. 32.
    Mathai J (2005) Irradiated blood components. Indian J Med Res 122(5):371–373Google Scholar
  33. 33.
    Wegener S, Marschall M, Schnabl J, Kleine H, Freund M (2000) White cell subsets in filtered red blood cell concentrates. Transfus Sci 23(1):29–32CrossRefGoogle Scholar
  34. 34.
    Rider JR, Want EJ, Winter MA, Turton JR, Pamphilon DH, Nobes P (2000) Differential leucocyte subpopulation analysis of leucodepleted red cell products. Transfus Med 10(1):49–58CrossRefGoogle Scholar
  35. 35.
    Pertinhez TA, Casali E, Baroni F, Berni P, Baricchi R, Spisni A (2016) A comparative study of the effect of leukoreduction and pre-storage leukodepletion on red blood cells during storage. Front Mol Biosci 3:13.  https://doi.org/10.3389/fmolb.2016.00013 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Antosik A, Czubak K, Gajek A, Marczak A, Glowacki R, Borowczyk K, Zbikowska HM (2015) Influence of prestorage irradiation on the oxidative stress markers, membrane integrity, size and shape of the cold stored red blood cells. Transfus Med Hemotherapy 42:140–148CrossRefGoogle Scholar
  37. 37.
    Ku CP, Passow H (1980) Creatine and creatinine transport in old and young human red blood cells. Biochim Biophys Acta-Biomembranes 600:212–227CrossRefGoogle Scholar
  38. 38.
    Davies SM, Szabo E, Wagner JE, Ramsay NK, Weisdorf DJ (1996) Idiopathic hyperammonemia: a frequently lethal complication of bone marrow transplantation. Bone Marrow Transplant 17:1119–1125Google Scholar
  39. 39.
    Tse N, Cederbaum S, Glaspy JA (1991) Hyperammonemia following allogeneic bone marrow transplantation. Am J Hematol 38:140–141CrossRefGoogle Scholar
  40. 40.
    Espinos J, Rifon J, Pérez-Calvo J, Nieto Y (2006) Idiopathic hyperammonemia following high-dose chemotherapy. Bone Marrow Transplant 37:899.  https://doi.org/10.1038/sj.bmt.1705346 CrossRefGoogle Scholar
  41. 41.
    Apushkin M, Das A, Joseph C, Leung EK, Yeo KT, Baron JM, Baron BW (2013) Reducing the risk of hyperammonemia from transfusion of stored red blood cells. Transfus Apher Sci 49:459–462.  https://doi.org/10.1016/j.transci.2013.05.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fabio Baroni
    • 1
    • 2
  • Chiara Marraccini
    • 1
  • Lucia Merolle
    • 1
  • Vando Piccagli
    • 3
  • Daniele Lambertini
    • 3
  • Mauro Iori
    • 3
  • Tommaso Fasano
    • 4
  • Emanuela Casali
    • 5
  • Alberto Spisni
    • 5
  • Roberto Baricchi
    • 1
  • Thelma A. Pertinhez
    • 1
    • 5
  1. 1.Transfusion Medicine UnitAUSL–IRCCSReggio EmiliaItaly
  2. 2.Department of Protein ChemistryMerckRomeItaly
  3. 3.Medical Physics UnitAUSL–IRCCSReggio EmiliaItaly
  4. 4.Clinical and Endocrinology LaboratoryAUSL–IRCCSReggio EmiliaItaly
  5. 5.Department of Medicine and SurgeryUniversity of ParmaParmaItaly

Personalised recommendations