Advertisement

Surgical and Radiologic Anatomy

, Volume 41, Issue 4, pp 415–421 | Cite as

The radial head size in relation to osseous landmarks of the forearm

  • Valentin RauschEmail author
  • Sebastian Wegmann
  • Michael Hackl
  • Tim Leschinger
  • Wolfram F. Neiss
  • Martin Scaal
  • Lars P. Müller
  • Kilian Wegmann
Original Article
  • 34 Downloads

Abstract

Purpose

Radial head fractures are regularly treated with radial head arthroplasty. To prevent limited motion or pain, the implant’s size should match its normal anatomy. Preoperative estimation of the radial head size helps in finding the correct head component. The aim of this study was to measure bony landmarks in proximity to the radial head to estimate the required size of a prosthesis preoperatively.

Methods

Anatomical landmarks on 82 elbows from 41 embalmed specimens (19 male, 22 female) were measured using a digital caliper after removal of the specimens’ tissue: the largest and smallest radial head diameter, length of the radius (styloid tip to radial head articular surface), and the length of the ulna (styloid tip to coronoid base). Additionally, cranio-caudal and antero-posterior diameters of the capitulum on scaled lateral elbow X-ray images were measured.

Results

The mean largest and smallest radial head diameters were 24.2 mm (± 2.2, range 19.9–30.3; ICC = 0.992) and 22.5 mm (± 2.0, range 18.9–27.5; ICC = 0.985). The mean radius length was 23.8 cm (± 1.6, range 20.1–27.1; ICC = 0.986), and the mean ulna length was 23.1 cm (± 1.6, range 19.3–26.3; ICC = 0.969). The mean antero-posterior capitulum diameter was 16.2 mm (± 2.4, range 10.4–21.0; ICC = 0.506), and the mean cranio-caudal diameter was 17.0 mm (± 3.3, range 10.0–23.9; ICC = 0.529). The highest correlation to radial head diameters could be shown for diameters of the contralateral radial head and the radius length.

Conclusions

For preoperative estimation of the radial head, the diameters of the contralateral radial head or the radius length are the most accurate.

Keywords

Elbow surgery Radial head Anatomy Forearm Radial head prosthesis Radial head fracture 

Notes

Acknowledgments

We would like to thank Oda C. Goetzke for helping with the preparation of the manuscript.

Author contributions

VR and KW conceived the presented idea and designed the study; VR, SW, WFN and MS carried out the anatomical measurements after preparation of the specimens; VR, KW and TL wrote the manuscript in consultation with LPM and MH; VR and KW aided in interpreting the results; LPM and KW supervised the project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mason ML (1954) Some observations on fractures of the head of the radius with a review of one hundred cases. Br J Surg 42:123–132.  https://doi.org/10.1002/bjs.18004217203 CrossRefGoogle Scholar
  2. 2.
    Ring D (2011) Radial head fracture: open reduction–internal fixation or prosthetic replacement. J Shoulder Elb Surg 20:S107–S112.  https://doi.org/10.1016/j.jse.2010.11.011 CrossRefGoogle Scholar
  3. 3.
    Burkhart KJ, Mattyasovszky SG, Runkel M et al (2010) Mid- to long-term results after bipolar radial head arthroplasty. J Shoulder Elb Surg 19:965–972.  https://doi.org/10.1016/j.jse.2010.05.022 CrossRefGoogle Scholar
  4. 4.
    Chanlalit C, Shukla DR, Fitzsimmons JS et al (2011) Influence of prosthetic design on radiocapitellar concavity-compression stability. J Shoulder Elb Surg 20:885–890.  https://doi.org/10.1016/j.jse.2011.03.009 CrossRefGoogle Scholar
  5. 5.
    Chanlalit C, Shukla DR, Fitzsimmons JS et al (2012) Stress shielding around radial head prostheses. J Hand Surg Am 37:2118–2125.  https://doi.org/10.1016/j.jhsa.2012.06.020 CrossRefGoogle Scholar
  6. 6.
    Chanlalit C, Shukla DR, Fitzsimmons JS et al (2012) The biomechanical effect of prosthetic design on radiocapitellar stability in a terrible triad model. J Orthop Trauma 26:539–544.  https://doi.org/10.1097/BOT.0b013e318238b3a2 CrossRefGoogle Scholar
  7. 7.
    Cohn M, Glait SA, Sapienza A, Kwon YW (2014) Radiocapitellar joint contact pressures following radial head arthroplasty. J Hand Surg Am 39:1566–1571.  https://doi.org/10.1016/j.jhsa.2014.05.021 CrossRefGoogle Scholar
  8. 8.
    Grewal R, MacDermid JC, Faber KJ et al (2006) Comminuted radial head fractures treated with a modular metallic radial head arthroplasty: study of outcomes. J Bone Jt Surg Ser A 88:2192–2200.  https://doi.org/10.2106/JBJS.E.00962 Google Scholar
  9. 9.
    Katthagen JC, Jensen G, Lill H, Voigt C (2013) Monobloc radial head prostheses in complex elbow injuries: results after primary and secondary implantation. Int Orthop 37:631–639.  https://doi.org/10.1007/s00264-012-1747-7 CrossRefGoogle Scholar
  10. 10.
    Levy JC, Formaini NT, Kurowicki J (2016) Outcomes and radiographic findings of anatomic press-fit radial head arthroplasty. J Shoulder Elb Surg 25:802–809.  https://doi.org/10.1016/j.jse.2015.11.014 CrossRefGoogle Scholar
  11. 11.
    Pomianowski S, Morrey BF, Neale PG et al (2001) Contribution of monoblock and bipolar radial head prostheses to valgus stability of the elbow. J Bone Jt Surg Ser A 83:1829–1834.  https://doi.org/10.2106/00004623-200112000-00010 CrossRefGoogle Scholar
  12. 12.
    Athwal GS, Frank SG, Grewal R et al (2010) Determination of correct implant size in radial head arthroplasty to avoid overlengthening: surgical technique. J Bone Jt Surg Ser A 92:250–257.  https://doi.org/10.2106/JBJS.J.00356 CrossRefGoogle Scholar
  13. 13.
    Birkedal JP, Deal DN, Ruch DS (2004) Loss of flexion after radial head replacement. J Shoulder Elb Surg 13:208–213.  https://doi.org/10.1016/j.jse.2003.11.007 CrossRefGoogle Scholar
  14. 14.
    Van Riet RP, Van Glabbeek F, Verborgt O, Gielen J (2004) Capitellar erosion caused by a metal radial head prosthesis: a case report. J Bone Jt Surg Ser A 86:1061–1064.  https://doi.org/10.2106/00004623-200405000-00028 CrossRefGoogle Scholar
  15. 15.
    van Riet RP, Sanchez-Sotelo J, Morrey BF (2010) Failure of metal radial head replacement. J Bone Jt Surg Br 92:661–667.  https://doi.org/10.1302/0301-620X.92B5.23067 CrossRefGoogle Scholar
  16. 16.
    Van Glabbeek F, Van Riet RP, Baumfeld JA et al (2004) Detrimental effects of overstuffing or understuffing with a radial head replacement in the medial collateral-ligament deficient elbow. J Bone Jt Surg Ser A 86:2629–2635.  https://doi.org/10.2106/00004623-200412000-00007 CrossRefGoogle Scholar
  17. 17.
    Lanting BA, Ferreira LM, Johnson JA et al (2015) Radial head implant diameter: a biomechanical assessment of the forgotten dimension. Clin Biomech 30:444–447.  https://doi.org/10.1016/j.clinbiomech.2015.03.012 CrossRefGoogle Scholar
  18. 18.
    Ten Berg PWL, Dobbe JGG, van Wolfswinkel G et al (2016) Validation of the contralateral side as reference for selecting radial head implant sizes. Surg Radiol Anat.  https://doi.org/10.1007/s00276-016-1625-x Google Scholar
  19. 19.
    Abdulla I, Langohr GDG, Gladwell M et al (2015) The effect of fracture comminution on the reliability and accuracy of radial head sizing. J Shoulder Elb Surg 24:364–368.  https://doi.org/10.1016/j.jse.2014.10.026 CrossRefGoogle Scholar
  20. 20.
    Alolabi B, Studer A, Gray A et al (2013) Selecting the diameter of a radial head implant: an assessment of local landmarks. J Shoulder Elb Surg 22:1395–1399.  https://doi.org/10.1016/j.jse.2013.04.005 CrossRefGoogle Scholar
  21. 21.
    Itamura JM, Roidis NT, Chong AK et al (2008) Computed tomography study of radial head morphology. J Shoulder Elb Surg 17:347–354.  https://doi.org/10.1016/j.jse.2007.07.019 CrossRefGoogle Scholar
  22. 22.
    King GJW, Zarzour ZDS, Patterson SD, Johnson JA (2001) An anthropometric study of the radial head: implications in the design of a prosthesis. J Arthroplasty 16:112–116.  https://doi.org/10.1054/arth.2001.16499 CrossRefGoogle Scholar
  23. 23.
    Koslowsky TC, Germund I, Beyer F et al (2007) Morphometric parameters of the radial head: an anatomical study. Surg Radiol Anat 29:225–230.  https://doi.org/10.1007/s00276-007-0197-1 CrossRefGoogle Scholar
  24. 24.
    Popovic N, Djekic J, Lemaire R, Gillet P (2005) A comparative study between proximal radial morphology and the floating radial head prosthesis. J Shoulder Elb Surg 14:433–440.  https://doi.org/10.1016/j.jse.2004.10.012 CrossRefGoogle Scholar
  25. 25.
    Vanhees M, Shukla DR, Fitzsimmons JS et al (2018) Anthropometric study of the radiocapitellar joint. J Hand Surg Am.  https://doi.org/10.1016/j.jhsa.2018.02.001 Google Scholar
  26. 26.
    Vaquero-Picado A, Núñez de Armas J, Antuña S, Barco R (2018) Morphometry of the radiocapitellar joint: is humeral condyle diameter a reliable predictor of the size of the radial head prosthesis? J Shoulder Elb Surg 27:1092–1096.  https://doi.org/10.1016/j.jse.2018.01.017 CrossRefGoogle Scholar
  27. 27.
    Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform.  https://doi.org/10.1186/s12859-017-1934-z Google Scholar
  28. 28.
    Beredjiklian PK, Nalbantoglu U, Potter HG, Hotchkiss RN (1999) Prosthetic radial head components and proximal radial morphology: a mismatch. J Shoulder Elb Surg 8:471–475.  https://doi.org/10.1016/S1058-2746(99)90079-4 CrossRefGoogle Scholar
  29. 29.
    Captier G, Canovas F, Mercier N et al (2002) Biometry of the radial head: biomechanical implications in pronation and supination. Surg Radiol Anat 24:295–301.  https://doi.org/10.1007/s00276-002-0059-9 CrossRefGoogle Scholar
  30. 30.
    Puchwein P, Heidari N, Dorr K et al (2013) Computer-aided analysis of radial head morphometry. Orthopedics 36:e51–e57.  https://doi.org/10.3928/01477447-20121217-18 CrossRefGoogle Scholar
  31. 31.
    Van Riet RP, Van Glabbeek F, Neale PG et al (2003) The noncircular shape of the radial head. J Hand Surg Am 28:972–978.  https://doi.org/10.1016/S0363-5023(03)00426-X CrossRefGoogle Scholar
  32. 32.
    Pietrzak JRT, Rowan FE, Kayani FB et al (2018) Preoperative CT-based three-dimensional templating in robot-assisted total knee arthroplasty more accurately predicts implant sizes than two-dimensional templating. J Knee Surg.  https://doi.org/10.1055/s-0038-1666829 Google Scholar
  33. 33.
    Sariali E, Mauprivez R, Khiami F et al (2012) Accuracy of the preoperative planning for cementless total hip arthroplasty. A randomised comparison between three-dimensional computerised planning and conventional templating. Orthop Traumatol Surg Res.  https://doi.org/10.1016/j.otsr.2011.09.023 Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Orthopedic and Trauma SurgeryUniversity Medical Center, University Hospital CologneCologneGermany
  2. 2.Department of Anatomy IUniversity of CologneCologneGermany
  3. 3.Department of Anatomy IIUniversity of CologneCologneGermany

Personalised recommendations