Advertisement

Surgical and Radiologic Anatomy

, Volume 39, Issue 4, pp 441–449 | Cite as

Creation of a Virtual Anatomy System based on Chinese Visible Human data sets

  • Binji Fang
  • Yi Wu
  • Chun Chu
  • Ying Li
  • Na Luo
  • Kaijun Liu
  • Liwen TanEmail author
  • Shaoxiang ZhangEmail author
Teaching Anatomy

Abstract

Purpose

Human anatomy learning confronts many difficulties, including the lack of anatomical specimens and limitations in anatomical dissection techniques that can destroy and change the shape and position of anatomic structures. A Virtual Anatomy System can help to overcome these difficulties.

Methods

Based on the high-resolution thin-sectional anatomical images of the Chinese Visible Human data set, we created a Virtual Anatomical System, including nearly all male and female anatomical structures.

Results

With this system, medical students can freely observe the detailed anatomical information of the coronal, sagittal, and transverse sections through a 3D-reconstructed realistic model on a personal computer in the local network.

Conclusions

This Virtual Anatomy System is an easy and direct way for students to learn and understand the shape and the relationship of anatomic structures, which can also make the anatomy learning more interesting. Furthermore, it can help students synthetically master the anatomical knowledge.

Keywords

Virtual anatomy system Virtual surgery Chinese Visible Human Three-dimensional reconstruction Sectional anatomy 

Notes

Acknowledgments

We thank the donors of the cadavers for contributing the body to our study.

Compliance with ethical standards

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81100480 and 61190122) (http://www.nsfc.gov.cn).

Conflict of interest

The authors declare no competing interests.

Supplementary material

Supplementary material 1 (AVI 5984 kb)

References

  1. 1.
    Burmester E, Leineweber T, Hacker S, Tiede U, Hutteroth TH, Hohne KH (2004) EUS Meets Voxel-Man: three-dimensional anatomic animation of linear-array endoscopic ultrasound images. Endoscopy 36:726–730. doi: 10.1055/s-2004-825669 CrossRefPubMedGoogle Scholar
  2. 2.
    China MoHo (2011) China health statistics yearbook. China Union Medical College Publishing, ChinaGoogle Scholar
  3. 3.
    Ge W, Li Y, Li ZS, Zhang SH, Sun YJ, Hu PZ, Wang XM, Huang Y, Si SY, Zhang XM, Sui YF (2009) The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother 58:201–208. doi: 10.1007/s00262-008-0539-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Hisley KC, Anderson LD, Smith SE, Kavic SM, Tracy JK (2008) Coupled physical and digital cadaver dissection followed by a visual test protocol provides insights into the nature of anatomical knowledge and its evaluation. Anat Sci Educ 1:27–40CrossRefPubMedGoogle Scholar
  5. 5.
    Howard JM, Cathcart MC, Healy L, Beddy P, Muldoon C, Pidgeon GP, Reynolds JV (2014) Leptin and adiponectin receptor expression in oesophageal cancer. Br J Surg 101:643–652. doi: 10.1002/bjs.9469 CrossRefPubMedGoogle Scholar
  6. 6.
    Keedy AW, Durack JC, Sandhu P, Chen EM, O’Sullivan PS, Breiman RS (2011) Comparison of traditional methods with 3D computer models in the instruction of hepatobiliary anatomy. Anat Sci Educ 4:84–91. doi: 10.1002/ase.212 CrossRefPubMedGoogle Scholar
  7. 7.
    Lei S, Hu-jian L, Xun J (2009) Comparison of constitution indexes of Han male youth recruited from different areas. Chin J Public Health 2:017Google Scholar
  8. 8.
    Li Y, Li DH, Yao YQ, Min BH, Zhang CL, Hou XH, Huang L, Zhao HX (2005) Alteration and potential role of soluble fms-like tyrosine kinase receptor 1 in preeclampsia. Zhonghua Fu Chan Ke Za Zhi 40:581–584PubMedGoogle Scholar
  9. 9.
    Linke R, Leichtle A, Sheikh F, Schmidt C, Frenzel H, Graefe H, Wollenberg B, Meyer JE (2013) Assessment of skills using a virtual reality temporal bone surgery simulator. Acta Otorhinolaryngol Ital 33:273–281PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S (2012) Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol 126:663–669. doi: 10.1017/S0022215112000734 CrossRefPubMedGoogle Scholar
  11. 11.
    Pflesser B, Petersik A, Pommert A, Riemer M, Schubert R, Tiede U, Hohne KH, Schumacher U, Richter E (2001) Exploring the visible human’s inner organs with the VOXEL-MAN 3D navigator. Stud Health Technol Inform 81:379–385PubMedGoogle Scholar
  12. 12.
    Reddy-Kolanu G, Alderson D (2011) Evaluating the effectiveness of the Voxel-Man TempoSurg virtual reality simulator in facilitating learning mastoid surgery. Ann R Coll Surg Engl 93:205–208. doi: 10.1308/003588411X565987 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rosseau G, Bailes J, del Maestro R, Cabral A, Choudhury N, Comas O, Debergue P, De Luca G, Hovdebo J, Jiang D, Laroche D, Neubauer A, Pazos V, Thibault F, Diraddo R (2013) The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery. Neurosurgery 73(Suppl 1):85–93. doi: 10.1227/NEU.000000000000011200006123-201310001-00016 CrossRefPubMedGoogle Scholar
  14. 14.
    Sai XY, Yan YP, Xu DZ, Zhang ZY, Cai KP, Li YS, Zhou XN (2005) The use of unsupervised classification of Landsat-5 TM images in analysing the types of vegetation in the areas of “breaking dikes or opening sluice for water store”. Zhonghua Liu Xing Bing Xue Za Zhi 26:88–91PubMedGoogle Scholar
  15. 15.
    Saltarelli AJ, Roseth CJ, Saltarelli WA (2014) Human cadavers vs. multimedia simulation: a study of student learning in anatomy. Anat Sci Educ 7:331–339. doi: 10.1002/ase.1429 CrossRefPubMedGoogle Scholar
  16. 16.
    Schiemann T, Freudenberg J, Pflesser B, Pommert A, Priesmeyer K, Riemer M, Schubert R, Tiede U, Hohne KH (2000) Exploring the Visible Human using the VOXEL-MAN framework. Comput Med Imaging Graph 24:127–132. doi: 10.1016/S0895-6111(00)00013-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Schubert R, Schiemann T, Tiede U, Hohne KH (1997) Applications and perspectives in anatomical 3-dimensional modelling of the visible human with VOXEL-MAN. Acta Anat (Basel) 160:123–131CrossRefGoogle Scholar
  18. 18.
    Shi JR, Zhang XH, Shi CH, Cao YX, Wu CG, Li Y, Fan XL, Qi HW (2005) The effects of rBCG expressing Der p2 in the form of lipoprotein on murine immune response. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 21:287–289PubMedGoogle Scholar
  19. 19.
    Sidloff DA, Gokani VJ, Stather PW, Choke E, Bown MJ, Sayers RD (2014) National Vascular Registry Report on surgical outcomes and implications for vascular centres. Br J Surg 101:637–642. doi: 10.1002/bjs.9462 CrossRefPubMedGoogle Scholar
  20. 20.
    Teishima J, Hattori M, Matsubara A (2013) Psychological factor, metacognition, is associated with the advantage of suturing techniques acquired on a virtual reality simulator of robot-assisted surgery. Int J Urol. doi: 10.1111/iju.12286 Google Scholar
  21. 21.
    Wang HS, Shao SJ, Wang YY, Qin YL, Cheng Z, Yan ZG, Zhuang TG, Min YJ (2006) Three-D visualization study on the acupoint of Jianliao (TE 14) based on the operational platform of Voxel-man. Zhongguo Zhen Jiu 26:789–792PubMedGoogle Scholar
  22. 22.
    Wang HS, Yan ZG, Cheng Z, Shao SJ, Zhuang TG (2009) Study on force feedback of acupuncture manipulation at Jianliao (TE 14) based on VOXEL-MAN. Zhongguo Zhen Jiu 29:745–748PubMedGoogle Scholar
  23. 23.
    Wu Y, Luo N, Tan L, Fang B, Li Y, Xie B, Liu K, Chu C, Li M, Zhang S (2013) Three-dimensional reconstruction of thoracic structures: based on Chinese Visible Human. Comput Math Methods Med 2013:795650PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu Y, Luo N, Tan LW, Fang BJ, Li Y, Xie B, Xu HT, Hu N, Yang WP, Wu W, Lamers WH, Zhang SX (2012) Comparative study of thin sectional anatomical images from Chinese visible human data set and computed tomography images of superior mediastinum. Clin Anat 25:1051–1061. doi: 10.1002/ca.22048 CrossRefPubMedGoogle Scholar
  25. 25.
    Wu Y, Tan LW, Li Y, Fang BJ, Xie B, Wu TN, Li QY, Qiu MG, Liu GJ, Li K, Xu HT, Luo N, Zhang SX (2012) Creation of a female and male segmentation dataset based on Chinese Visible Human (CVH). Comput Med Imaging Graph 36:336–342. doi: 10.1016/j.compmedimag.2012.01.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Wu Y, Zhang SX, Luo N, Qiu MG, Tan LW, Li QY, Liu GJ, Li K (2010) Creation of the digital three-dimensional model of the prostate and its adjacent structures based on Chinese visible human. Surg Radiol Anat 32:629–635. doi: 10.1007/s00276-010-0625-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Xu P, Dou KF, Chen ZN, Xing JL, Li Y, Kong LE (2005) High expression of hepatoma associated antigen HAb18G in prokaryotic cells and study on its function in vitro. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 21:734–737PubMedGoogle Scholar
  28. 28.
    Yang X-G, Li Y-P, Ma G-S, Hu X-Q, Wang J-Z, Cui Z-H, Wang Z-H, Yu W-T, Yang Z-X, Zhai F-Y (2005) Study on weight and height of the Chinese people and the differences between 1992 and 2002. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi 26:489–493PubMedGoogle Scholar
  29. 29.
    Zhang SX, Heng PA, Liu ZJ (2006) Chinese visible human project. Clin Anat 19:204–215. doi: 10.1002/ca.20273 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Institute of Digital Medicine, Biomedical Engineering CollegeThird Military Medical UniversityChongqingChina
  2. 2.Department of Dermatology, Southwest HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations