Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards

  • Kyle R. KnipperEmail author
  • William P. Kustas
  • Martha C. Anderson
  • Joseph G. Alfieri
  • John H. Prueger
  • Christopher R. Hain
  • Feng Gao
  • Yun Yang
  • Lynn G. McKee
  • Hector Nieto
  • Lawrence E. Hipps
  • Maria Mar Alsina
  • Luis Sanchez
Original Paper


Irrigation in the Central Valley of California is essential for successful wine grape production. With reductions in water availability in much of California due to drought and competing water-use interests, it is important to optimize irrigation management strategies. In the current study, we investigate the utility of satellite-derived maps of evapotranspiration (ET) and the ratio of actual-to-reference ET (fRET) based on remotely sensed land-surface temperature (LST) imagery for monitoring crop water use and stress in vineyards. The Disaggregated Atmosphere Land EXchange Inverse (ALEXI/DisALEXI) surface-energy balance model, a multi-scale ET remote-sensing framework with operational capabilities, is evaluated over two Pinot noir vineyard sites in central California that are being monitored as part of the Grape Remote-Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). A data fusion approach is employed to combine ET time-series retrievals from multiple satellite platforms to generate estimates at both the high spatial (30 m) and temporal (daily) resolution required for field-scale irrigation management. Comparisons with micrometeorological data indicate reasonable model performance, with mean absolute errors of 0.6 mm day−1 in ET at the daily time step and minimal bias. Values of fRET agree well with tower observations and reflect known irrigation. Spatiotemporal analyses illustrate the ability of ALEXI/DisALEXI/data fusion package to characterize heterogeneity in ET and fRET both within a vineyard and over the surrounding landscape. These findings will inform the development of strategies for integrating ET mapping time series into operational irrigation management framework, providing actionable information regarding vineyard water use and crop stress at the field and regional scale and at daily to multi-annual time scales.



Authors would like to thank the staff of Viticulture, Chemistry and Enology Division of E&J Gallo Winery for the collection and processing of field data and insight to local irrigation practices. Authors would also like to thank the Borden vineyard staff for logistical support of GRAPEX field and research activities. USDA is an equal opportunity provider and employer.

Compliance with ethical standards

Conflict of interest

Authors report no conflicts of interest in the material presented in this study.


  1. Alfieri JG, Kustas WP, Prueger JH, Hipps LE, Evett SR, Basara JB, Neale CMU, French AN, Colaizzi PD, Agam N, Cosh MH, Chavez JL, Howell TA (2012) On the discrepancy between eddy covariance and lysimetry-based turbulent flux measurements under strongly advective conditions. Adv Water Resour 50:62–78. CrossRefGoogle Scholar
  2. Alfieri JG, Kustas WP, Prueger JH, McKee LG, Hipps LE, Gao F (2018) A multi-year intercomparison of micrometeorological observations at adjacent vineyards in California’s central valley during GRAPEX. Irrig Sci. CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, RomeGoogle Scholar
  4. Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng 133:380–394. CrossRefGoogle Scholar
  5. Anderson MC, Norman JM, Diak GR, Kustas WP, Mecikalski JR (1997) A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ 60:195–216. CrossRefGoogle Scholar
  6. Anderson MC, Norman JM, Mecikalski JR, Torn RD, Kustas WP, Basara JB (2004) A multi-scale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J Hydrometeorol 5:343–363.;2 CrossRefGoogle Scholar
  7. Anderson MC, Norman JM, Kustas WP, Li F, Prueger JH, Mechikalski JR (2007a) A climatological study of evapotranspiration and moisture stress across the continental United States: I. Model formulation. J Geophys Res. CrossRefGoogle Scholar
  8. Anderson MC, Norman JM, Mecikalski JR, Otkin PJ, Kustas WP (2007b) A climatological study of evapotranspiration and moisture stress across the continental United States: II. Surface moisture climatology. J Geophys Res. CrossRefGoogle Scholar
  9. Anderson MC, Hain CR, Wardlow B, Mecikalski JR, Kustas WP (2011) Evaluation of drought indices beased on thermal remote sensing of evapotranspiration over the continental U.S. J Clim 24:2025–2044. CrossRefGoogle Scholar
  10. Anderson MC, Kustas WP, Alfieri JG, Gao F, Hain C, Prueger JH, Chavex JL (2012) Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ 122:50–65. CrossRefGoogle Scholar
  11. Anderson MC, Hain CR, Otkin JA, Zhan X, Mo KC, Svoboda M et al (2013) An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications. J Hydrometeorol 14:1035–1056. CrossRefGoogle Scholar
  12. Anderson MC, Gao F, Knipper KR, Hain CR, Dulaney W, Baldocchi D, Eichelmann E, Hemes K, Yang Y, Medellin-Azuara J, Kustas K (2018) Field-scale assessment of land and water use change over the California Delta using remote sensing. Remote Sens. CrossRefGoogle Scholar
  13. Azevedo PV, Soares JM, Silva V, Silva BB, Nascimento T (2008) Evapotranspiration of “Superior” grapevines under intermittent irrigation. Agric Water Manag 95:301–308. CrossRefGoogle Scholar
  14. Basile B, Marsal J, Mata M, Vallverdú X, Bellvert J, Girona J (2011) Phenological sensitivity of Cabernet Sauvignon to water stress: vine physiology and berry composition. Am J Enol Vitic 62:452–461. CrossRefGoogle Scholar
  15. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J Hydrol 212–213:198–212. CrossRefGoogle Scholar
  16. Bellvert J, Marsal J, Mata M, Girona J (2012) Identifying irrigation zones across a 7.5-ha ‘Pinot noir’ vineyard based on the variability of vine water status and multispectral images. Irrig Sci 30:499–509. CrossRefGoogle Scholar
  17. Bellvert J, Marsal J, Girona J, Gonzalex-Dugo V, Fereres E, Ustin S, Zarco-Tejada PJ (2016) Airborne thermal imagery to detect the seasonal evolution of crop water satus in peach, nectarine and Saturn peach orchards. Remote Sens. CrossRefGoogle Scholar
  18. Berk A, Bernstein LS, Robertson DC (1989) MODTRAN: A moderate resolution model for LOWTRAN 7. GL-TR-89-0122. Air Force Geophysics Lab, Bedford, p 38Google Scholar
  19. Bramley RGV, Hamilton RP (2004) Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages. Aust J Grape Wine Res 10:32–45. CrossRefGoogle Scholar
  20. Bramley RGV, Oriffitt APB, Hinze CJ, Pearse B, Hamilton RP (2005) Generating benefits from precision viticulture through selective harvesting. In: Stafford JV (ed), Precision agriculture’05. Proceedings of the 5th European conference on precision agriculture; 9–12 June; Uppsala Sweden (Wageningen Academic Publishers: Wegeningen, The Netherlands) pp. 891–898Google Scholar
  21. California Department of Food and Agriculture and USDA National Agricultural Statistics Service (2016) California agricultural statistics review, 2015–2016. Accessed Aug 2017
  22. California Department of Food and Agriculture and USDA National Agricultural Statistics Service (2017) California grape acreage report 2016 crop. Accessed Aug 2017
  23. Cammalleri C, Anderson MC, Gao F, Hain C, Kustas WP (2013) A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour Res 49:4672–4686. CrossRefGoogle Scholar
  24. Cammalleri C, Anderson MC, Kustas WP (2014a) Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications. Hydrol Earth Syst Sci 18:1885:1894. CrossRefGoogle Scholar
  25. Cammalleri C, Anderson MC, Gao F, Hain CR, Kustas WP (2014b) Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric For Meteorol 186:1–11. CrossRefGoogle Scholar
  26. Cancela JJ, Fandino M, Rey BJ, Rosa R, Pereira LS (2012) Estimating transpiration and soil evaporation of vineyards from the fraction of ground cover and crop height—application to ‘Albarino’ vineyards of Galicia. Acta Hortic 931:227–234. CrossRefGoogle Scholar
  27. Castellvi F, Snyder RL (2010) A new procedure based on surface renewal analysis to estimate sensible heat flux: a case study over grapevines. J Hydrometeorol 11:496–508. CrossRefGoogle Scholar
  28. Crago R (1996) Conservation and variability of the evaporative fraction during the daytime. J Hydrol 180:173–194. CrossRefGoogle Scholar
  29. Dee DP, Balmaseda M, Balsamo G, Engelen R, Simmons AJ, Thépaut JN (2013) Toward a consistent reanalysis of the climate system. Bull Am Meteorol Soc 95(8):1235–1248. CrossRefGoogle Scholar
  30. Diak GR (2017) Investigations of improvements to an operational GOES-satellite-data-based insolation system using pyranometer data from the U.S. Climate Reference Network (USCRN). Remote Sens Environ 195:79–95. CrossRefGoogle Scholar
  31. Fooladmand HR, Sepaskhah AR (2009) A soil water balance model for a rain-fed vineyard in a micro catchment based on dual crop coefficient. Arch Agron Soil Sci 55:67–77. CrossRefGoogle Scholar
  32. French AN, Norman JM, Anderson MC (2003) A simple and fast atmospheric correction for spaceborne remote sensing of surface temperature. Remote Sens Environ 87:2–3CrossRefGoogle Scholar
  33. Fry JA, Xian G, Jin S, Dewitz JA, Homer CG, Yang L, Barnes CA, Herold ND, Wickham JD (2011) Completion of the 2006 national land cover database for the conterminous United States. Photogramm Eng Remote Sens 77(9):858–864Google Scholar
  34. Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218. CrossRefGoogle Scholar
  35. Gao F, Morisette JT, Wolfe RE, Ederer G, Pedelty J, Masuoka E, Myneni R, Tan B, Nightingale J (2008) An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci Remote Sens Lett 5(1):60–64. CrossRefGoogle Scholar
  36. Gao F, Kustas W, Anderson M (2012a) A data mining approach for sharpening thermal satellite imagery over land. Remote Sens 4:3287–3319. CrossRefGoogle Scholar
  37. Gao F, Anderson MC, Kustas WP, Wang Y (2012b) Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. J Appl Remote Sci 6(1):063554. CrossRefGoogle Scholar
  38. Girona J, Mata M, del Campo J, Arbonés A, Bartra E, Marsal J (2006) The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig Sci 24:115–127. CrossRefGoogle Scholar
  39. Girona J, Marsal J, Mata M, del Campo J, Basile B (2009) Phenological sensitivity to berry growth and composition of Tempranillo grapevines (Vitis vinifera L.) to water stress. Aust J Grape Wine Res 15:268–277. CrossRefGoogle Scholar
  40. Hansen MC, DeFries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364CrossRefGoogle Scholar
  41. Intrigliolo DS, Lakso AN, Piccioni RM (2009) Grapevine cv, ‘Riesling’ water use in the northeastern United States. Irrig Sci 27:253–262. CrossRefGoogle Scholar
  42. Johnson RS, Williams LE, Ayars JE, Trout TJ (2005) Weighing lysimeters aid study of water relations in tree and vine crops. Calif Agric 59:133–136. CrossRefGoogle Scholar
  43. Jönsson P, Eklundh L (2004) TIMESAT – A program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–845CrossRefGoogle Scholar
  44. Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric For Meteorol 94:13–29. CrossRefGoogle Scholar
  45. Kustas WP, Anderson MC, Alfieri JG, Knipper K, Torres-Rua A, Parry CK, Nieto H, Agam N, White A, Gao F, McKee L, Prueger JH, Hipps LE, Los S, Alsina M, Sanchez L, Sams B, Dokoozlian N, McKee M, Jones S, McElrone A, Heitman JL, Howard AM, Post K, Melton F, Hain C (2018) The grape remote sensing atmospheric profile and evapotranspiration eXperiment (GRAPEX). B Am Meteorol Soc 9:1791–1812CrossRefGoogle Scholar
  46. Laszlo I, Ciren P, Liu H, Kondragunta S, Tarpley J, Goldberg M (2008) Remote sensing of aerosol and radiation from geostationary satellites. Adv Space Res 41:1882–1893. CrossRefGoogle Scholar
  47. McNaughton KG, Spriggs TW (1986) A mixed-layer model for regional evaporation. Bound Lay Meteorol 34:243–262. CrossRefGoogle Scholar
  48. Mecikalski JM, Diak GR, Anderson MC, Norman JM (1999) Estimating fluxes on continental scales using remotely-sensed data in an atmosphere-land exchange model. J Appl Meteorol 38:1352–1369.;2.CrossRefGoogle Scholar
  49. Moran MS (2003) Thermal infrared measurements as an indicator of plant ecosystem health. In: Quattrochi DA, Luval J (eds) Thermal remote sensing in land processes, Taylor and Francis, Routledge, 257–282Google Scholar
  50. Moratiel R, Martinez-Cob A (2012) Evapotranspiration of grapevine trained to a gable trellis system under netting and black plastic mulching. Irrig Sci 30:167–178. CrossRefGoogle Scholar
  51. Netzer Y, Yao C, Shenker M, Bravdo BA, Schwartz A (2009) Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrig Sci 25:161–170. CrossRefGoogle Scholar
  52. Norman JM, Kustas WP, Humes KS (1995) A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperatures. Agric For Meteorol 77:263–293. CrossRefGoogle Scholar
  53. Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski J, Torn R, Tanner BCW (2003) Remote sensing of surface energy fluxes 101-m pixel resolutions. Water Resour Res. CrossRefGoogle Scholar
  54. Ortega-Farias S, Poblete-Echeverria C, Brisson N (2010) Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric For Meteorol 150:276–286. CrossRefGoogle Scholar
  55. Otkin JA, Anderson MC, Hain CR, Mladenova IE, Basara JB, Svoboda M (2013) Examining rapid onset drought development using the thermal infrared based Evaporative Stress Index. J Hydrometeorol 14:1057–1074. CrossRefGoogle Scholar
  56. Otkin JA, Anderson MC, Hain CR, Svoboda M (2014) Examining the relationship between drought development and rapid changes in the Evaporative Stress Index. J Hydrometeorol 15:938–956. CrossRefGoogle Scholar
  57. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92CrossRefGoogle Scholar
  58. Rodriquez JC et al (2010) Water use by perennial crops in the lower Sonora watershed. J Arid Environ 74:603–610. CrossRefGoogle Scholar
  59. Santanello JA, Friedl MA (2003) Diurnal variation in soil heat flux and net radiation. J Appl Meteorol 42:851–862CrossRefGoogle Scholar
  60. Semmens KA, Anderson MC, Kustas WP, Gao F, Alfieri JG, McKee L, Prueger JH, Hain CR, Cammalleri C, Yang Y, Xia T, Sanchez L, Alsina MM, Velez M (2016) Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens Environ 185:155–170. CrossRefGoogle Scholar
  61. Singleton PL, Maudsley D (1996) Pattern of water extraction by grapevines on two soils in the Waikato, New Zealand. N Z J Crop Hortic Sci 24:415–424. CrossRefGoogle Scholar
  62. Spano D, Snyder RL, Ducec P, Paw UKT (2000) Estimating sensible and latent heat flux densities from grapevine canopies using surface renewal. Agric For Meteorol 104:71–183. CrossRefGoogle Scholar
  63. Su Z (2002) The surface energy balance system (SEBS) for estimation of the turbulent heat fluxes. Hydrol Earth Sci 6:85–99. CrossRefGoogle Scholar
  64. Sun L, Gao F, Anderson MC, Kustas WP, Alsina MM, Sanchez S, Sams B, McKee L, Dulaney W, White WA, Alfieri JG, Prueger JH, Melton F, Post K (2017) Daily mapping of 30 m LAI and NDVI for grape yield prediction in. Calif Vineyard 9:1–18. CrossRefGoogle Scholar
  65. Tang R, Li Z, Sun X (2013) Temporal upscaling of instantaneous evapotranspiration: an intercomparison of four methods using eddy covariance measurements and MODIS data. Remote Sens Environ 138:102–118. CrossRefGoogle Scholar
  66. Teixeira AH, de C, Bastiaanssen, Bassoi WGM LH (2007) Crop water parameters of irrigated wine and table grapes to supper water productivity analysis in the Sao Francisco river basin, Brazil. Agric Water Manage 94:31–42. CrossRefGoogle Scholar
  67. Trambouze W, Bertuzzi P, Voltz M (1998) Comparison of methods for estimating actual evapotranspiration in a row-cropped vineyard. Agric For Meteorol 91:193–208CrossRefGoogle Scholar
  68. Twine TE, Kustas WP, Norman JM, Cook DR, Houser P, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300. CrossRefGoogle Scholar
  69. Van Leeuwen C, Tregoat O, Chone X, Bois B, Pernet D, Gaudillé JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes? J Int des sciences de la vigne et du vin 43:121–143. CrossRefGoogle Scholar
  70. Whelan BM, McBratney AB, Minasny B (2002) VESPER 1.5 – Spatial prediction software for precision agriculture. In: Robery PC, Rust RH, Larson WE (eds) Precision agriculture, proceedings of the 6th international conference of precision agriculture, ASA/CSSA/SSSA, Madison, WisconsinGoogle Scholar
  71. Williams LE, Matthews MA (1990) Grapevines. In: Stewart BA, Nielsen DR (eds) Agronomy monograph #30 irrigation of agricultural crops. ASA-CSSA-SSSA Publishers, Madison, pp 1019–1055Google Scholar
  72. Williams LE, Dokoozlian NK, Wample RL (1994) Grape. In: Shaffer B, Anderson PC (eds) Handbook of environmental physiological of fruit crops. Temperate crops, vol 1. CRC Press, Orlando, pp 83–133Google Scholar
  73. Xia T, Kustas WP, Anderson MC, Alfieri JG, Gao F, McKee L, Prueger JH, Geli HME, Neale CMU, Sanchez L, Alsina MM, Wang Z (2016) Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes. Hydrol Earth Syst Sci 20:1523–1545. CrossRefGoogle Scholar
  74. Yunusa IAM, Walker RR, Guy IR (1997) Partitioning of seasonal evapotranspiration from a commercial furrow-irrigated Sultana vineyard. Irrig Sci 18:45–54. CrossRefGoogle Scholar
  75. Yunusa IAM, Walker RR, Lu P (2004) Evapotranspiration components form energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agric For Meteorol 127:93–107. CrossRefGoogle Scholar
  76. Zhang Y, Kang S, Li F, Tong L, Du T (2010) Variation in vineyard evapotranspiration in an arid region of northwest China. Agric For Meteorol 97:1898–1904. CrossRefGoogle Scholar
  77. Zhang Y, Kang S, Ward EJ, Ding R, Zhang X, Zheng R (2011) Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: dynamics and influence factors. Agric For Meteorol 98:1207–1214. CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  • Kyle R. Knipper
    • 1
    Email author
  • William P. Kustas
    • 1
  • Martha C. Anderson
    • 1
  • Joseph G. Alfieri
    • 1
  • John H. Prueger
    • 2
  • Christopher R. Hain
    • 3
  • Feng Gao
    • 1
  • Yun Yang
    • 1
  • Lynn G. McKee
    • 1
  • Hector Nieto
    • 4
  • Lawrence E. Hipps
    • 5
  • Maria Mar Alsina
    • 6
  • Luis Sanchez
    • 6
  1. 1.Hydrology and Remote Sensing LaboratoryUSDA ARSBeltsvilleUSA
  2. 2.National Laboratory for Agriculture and the EnvironmentUSDA ARSAmesUSA
  3. 3.NASA Marshall Space Flight CenterHuntsvilleUSA
  4. 4.Institute for Food and Agricultural Research and TechnologyParc de Gardeny, Edifici FruitcentreLleidaSpain
  5. 5.Plants, Soils and Climate DepartmentUtah State UniversityLoganUSA
  6. 6.E.&J. Gallo Winery, Viticulture, Chemistry and EnologyModestoUSA

Personalised recommendations