Advertisement

Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery

  • Héctor Nieto
  • William P. Kustas
  • Alfonso Torres-Rúa
  • Joseph G. Alfieri
  • Feng Gao
  • Martha C. Anderson
  • W. Alex White
  • Lisheng Song
  • María del Mar Alsina
  • John H. Prueger
  • Mac McKee
  • Manal Elarab
  • Lynn G. McKee
Original Paper

Abstract

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from an unmanned aerial vehicle were collected over vineyards in California, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment and used in four different TSEB approaches to estimate the component soil and canopy temperatures, and ET partitioning between soil and canopy. Two approaches rely on the use of composite \(T_\mathrm{rad}\), and assume initially that the canopy transpires at the Priestley–Taylor potential rate. The other two algorithms are based on the contextual relationship between optical and thermal imagery partition \(T_\mathrm{rad}\) into soil and canopy component temperatures, which are then used to drive the TSEB without requiring a priori assumptions regarding initial canopy transpiration rate. The results showed that a simple contextual algorithm based on the inverse relationship of a vegetation index and \(T_\mathrm{rad}\) to derive soil and canopy temperatures yielded the closest agreement with flux tower measurements. The utility in very high-resolution remote-sensing data for estimating ET and E and T partitioning at the canopy level is also discussed.

Notes

Acknowledgements

Partial funding provided by E.&J. Gallo Winery made possible the acquisition and processing of the high-resolution manned aircraft and UAV imagery collected during GRAPEX IOPs. In addition, thanks are given to the Utah Water Research Laboratory for the use of the AggieAir UAV platform, support personnel and partial funding. In addition, we would like to thank the staff of Viticulture, Chemistry and Enology Division of E.&J. Gallo Winery for the collection and processing of field data during GRAPEX IOPs. Finally, this project would not have been possible without the cooperation of Mr. Ernie Dosio of Pacific Agri Lands Management, along with the Borden/ McMannis vineyard staff, for logistical support of GRAPEX field and research activities. USDA is an equal opportunity provider and employer.

References

  1. Aboutalebi A, Torres-Rua A, Nieto H, Kustas W (2018) Assessment of different methods for the shadows detection in high-resolution imagery and shadows impact on calculation of NDVI, LAI, and evapotranspiration. Irrig Sci (this issue) Google Scholar
  2. Agam N, Alfieri J, Kustas W, Jones S, McKee L, Prueger J (2018) Spatial variability in soil heat flux from a detailed soil heat flux plates array. Irrig Sci (this issue) Google Scholar
  3. Alfieri J, Kustas W, Gao F, Prueger J, Nieto H, Hipps L (2018) Influence of wind direction on the effective surface roughness of vineyards. Irrig Sci (this issue) Google Scholar
  4. Anderson MC, Norman JM, Kustas WP, Houborg R, Starks PJ, Agam N (2008) A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens Environ 112(12):4227–4241.  https://doi.org/10.1016/j.rse.2008.07.009 CrossRefGoogle Scholar
  5. Anderson MC, Kustas WP, Norman JM, Hain CR, Mecikalski JR, Schultz L, González-Dugo MP, Cammalleri C, d’Urso G, Pimstein A, Gao F (2011) Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol Earth Syst Sci 15(1):223–239.  https://doi.org/10.5194/hess-15-223-2011 CrossRefGoogle Scholar
  6. Bellvert J, Zarco-Tejada P, Marsal J, Girona J, González-Dugo V, Fereres E (2016) Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Aust J Grape Wine Res 22(2):307–315.  https://doi.org/10.1111/ajgw.12173 CrossRefGoogle Scholar
  7. Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47(3):722–738.  https://doi.org/10.1109/TGRS.2008.2010457 CrossRefGoogle Scholar
  8. Brutsaert W (1999) Aspects of bulk atmospheric boundary layer similarity under free-convective conditions. Rev Geophys 37(4):439–451CrossRefGoogle Scholar
  9. Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Cammalleri C, Anderson MC, Gao F, Hain CR, Kustas WP (2013) A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour Res 49(8):4672–4686.  https://doi.org/10.1002/wrcr.20349 CrossRefGoogle Scholar
  11. Cammalleri C, Anderson M, Gao F, Hain C, Kustas W (2014) Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric For Meteorol 186:1–11.  https://doi.org/10.1016/j.agrformet.2013.11.001 CrossRefGoogle Scholar
  12. Campbell G (1990) Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric For Meteorol 49(3):173–176.  https://doi.org/10.1016/0168-1923(90)90030-A CrossRefGoogle Scholar
  13. Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36(4):317–321CrossRefGoogle Scholar
  14. Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  15. Chehbouni A, Nouvellon Y, Lhomme J, Watts C, Boulet G, Kerr Y, Moran M, Goodrich D (2001) Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. Agric For Meteorol 108(1):55–65CrossRefGoogle Scholar
  16. Colaizzi P, Evett S, Howell T, Li F, Kustas W, Anderson M (2012a) Radiation model for row crops: I. Geometric view factors and parameter optimization. Agron J 104(2):225–240CrossRefGoogle Scholar
  17. Colaizzi P, Agam N, Tolk J, Evett S, Howell T, Gowda P, O’Shaughnessy S, Kustas W, Anderson M (2014) Two-source energy balance model to calculate E, T, and ET: Comparison of Priestley-Taylor and Penman-Monteith formulations and two time scaling methods. Trans ASABE 57:479–498Google Scholar
  18. Colaizzi PD, Kustas WP, Anderson MC, Agam N, Tolk JA, Evett SR, Howell TA, Gowda PH, O’Shaughnessy SA (2012b) Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv Water Resour 50:134–151.  https://doi.org/10.1016/j.advwatres.2012.06.004 CrossRefGoogle Scholar
  19. Colaizzi PD, Schwartz RC, Evett SR, Howell TA, Gowda PH, Tolk JA (2012c) Radiation model for row crops: II. Model evaluation. Agron J 104(2):241–255.  https://doi.org/10.2134/agronj2011.0083 CrossRefGoogle Scholar
  20. Coops NC, Hilker T, Wulder MA, St-Onge B, Newnham G, Siggins A, Trofymow JAT (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 21(3):295.  https://doi.org/10.1007/s00468-006-0119-6 CrossRefGoogle Scholar
  21. Detto M, Montaldo N, Albertson JD, Mancini M, Katul G (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous mediterranean ecosystem on Sardinia. Italy. Water Resour Res 42(8):w08419.  https://doi.org/10.1029/2005WR004693 CrossRefGoogle Scholar
  22. Gao F, Kustas WP, Anderson MC (2012) A data mining approach for sharpening thermal satellite imagery over land. Remote Sens 4(11):3287.  https://doi.org/10.3390/rs4113287 CrossRefGoogle Scholar
  23. Goudriaan J (1977) Crop micrometeorology: a simulation stud. Center for Agricultural Publications and Documentation, Wageningen, Tech. repGoogle Scholar
  24. Guzinski R, Anderson MC, Kustas WP, Nieto H, Sandholt I (2013) Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations. Hydrol Earth Syst Sci 17(7):2809–2825.  https://doi.org/10.5194/hess-17-2809-2013 CrossRefGoogle Scholar
  25. Guzinski R, Nieto H, Jensen R, Mendiguren G (2014) Remotely sensed land-surface energy fluxes at sub-field scale in heterogeneous agricultural landscape and coniferous plantation. Biogeosciences 11(18):5021–5046.  https://doi.org/10.5194/bg-11-5021-2014 CrossRefGoogle Scholar
  26. Guzinski R, Nieto H, Stisen S, Fensholt R (2015) Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment. Hydrol Earth Syst Sci 19(4):2017–2036.  https://doi.org/10.5194/hess-19-2017-2015 CrossRefGoogle Scholar
  27. Hillel D (1998) Environmental soil physics. Academic Press, New YorkGoogle Scholar
  28. Hoffmann H, Nieto H, Jensen R, Guzinski R, Zarco-Tejada P, Friborg T (2016) Estimating evaporation with thermal UAV and two-source energy balance models. Hydrol Earth Syst Sci 20(2):697–713.  https://doi.org/10.5194/hess-20-697-2016 CrossRefGoogle Scholar
  29. Knipper KR, Kustas WP, Anderson MC, Alfieri JG, Prueger JH, Hain CR, Gao F, Yang Y, McKee LG, Nieto H, Hipps LE, Alsina MM, Sanchez6 L (2018) Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in california vineyards. Irrig Sci (this issue) Google Scholar
  30. Kondo J, Ishida S (1997) Sensible heat flux from the earth’s surface under natural convective conditions. J Atmos Sci 54(4):498–509CrossRefGoogle Scholar
  31. Kustas W, Anderson M (2009) Advances in thermal infrared remote sensing for land surface modeling. Agric For Meteorol 149(12):2071–2081 (Environmental Biophysics - Tribute to John Norman)CrossRefGoogle Scholar
  32. Kustas W, Norman J (2000) A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agron J 92(5):847–854CrossRefGoogle Scholar
  33. Kustas W, Alfieri J, Nieto H, Gao F, Anderson M (2018) Utility of the two-source energy balance model TSEB in vine and inter-row flux partitioning over the growing season. Irrig Sci.  https://doi.org/10.1007/s00271-018-0586-8 (this issue) CrossRefGoogle Scholar
  34. Kustas WP, Norman JM (1997) A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations. Water Resour Res 33(6):1495–1508.  https://doi.org/10.1029/97WR00704 CrossRefGoogle Scholar
  35. Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric For Meteorol 94(1):13–29.  https://doi.org/10.1016/S0168-1923(99)00005-2 CrossRefGoogle Scholar
  36. Kustas WP, Alfieri JG, Anderson MC, Colaizzi PD, Prueger JH, Evett SR, Neale CM, French AN, Hipps LE, Chávez JL, Copeland KS, Howell TA (2012) Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area. Adv Water Resour 50:120–133.  https://doi.org/10.1016/j.advwatres.2012.07.005 CrossRefGoogle Scholar
  37. Kustas WP, Nieto H, Morillas L, Anderson MC, Alfieri JG, Hipps LE, Villagarcía L, Domingo F, García M (2016) Revisiting the paper “using radiometric surface temperature for surface energy flux estimation in mediterranean drylands from a two-source perspective”. Remote Sens Environ 184:645–653CrossRefGoogle Scholar
  38. Kustas WP, Anderson MC, Alfieri JG, Knipper K, Torres-Rua A, Parry CK, Nieto H, Agam N, White A, Gao F, McKee L, Prueger JH, Hipps LE, Los S, Alsina M, Sanchez L, Sams B, Dokoozlian N, McKee M, Jones S, McElrone A, Heitman JL, Howard AM, Post K, Melton F, Hain C (2018) The grape remote sensing atmospheric profile and evapotranspiration eXperiment (GRAPEX). Bull Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-16-0244.1 (in press) CrossRefGoogle Scholar
  39. Li F, Kustas WP, Prueger JH, Neale CM, Jackson TJ (2005) Utility of remote sensing-based two-source energy balance model under low-and high-vegetation cover conditions. J Hydrometeorol 6(6):878–891CrossRefGoogle Scholar
  40. Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm Remote Sens 64(1):1–16.  https://doi.org/10.1016/j.isprsjprs.2008.09.007 CrossRefGoogle Scholar
  41. Massman W (1987) A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Bound-Layer Meteorol 40(1):179–197CrossRefGoogle Scholar
  42. Massman W, Forthofer J, Finney M (2017) An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Can J For Res 47(5):594–603.  https://doi.org/10.1139/cjfr-2016-0354 CrossRefGoogle Scholar
  43. Morillas L, García M, Nieto H, Villagarcía L, Sandholt I, González-Dugo M, Zarco-Tejada P, Domingo F (2013) Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective. Remote Sens Environ 136:234–246.  https://doi.org/10.1016/j.rse.2013.05.010 CrossRefGoogle Scholar
  44. Nieto H, Kustas W, Gao F, Alfieri J, Torres A, Hipps L (2018) Impact of different within-canopy wind attenuation formulations on modelling evapotranspiration using TSEB. Irrig Sci (this issue) Google Scholar
  45. Norman J, Kustas W, Prueger J, Diak G (2000) Surface flux estimation using radiometric temperature: a dual-temperature-difference method to minimize measurement errors. Water Resour Res 36(8):2263–2274CrossRefGoogle Scholar
  46. Norman JM, Kustas WP, Humes KS (1995) Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol 77(3–4):263–293.  https://doi.org/10.1016/0168-1923(95)02265-Y CrossRefGoogle Scholar
  47. Ortega-Farías S, Ortega-Salazar S, Poblete T, Kilic A, Allen R, Poblete-Echeverría C, Ahumada-Orellana L, Zuñiga M, Sepúlveda D (2016) Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens 8(8):638.  https://doi.org/10.3390/rs8080638 CrossRefGoogle Scholar
  48. Parry C, Nieto H, Guillevic P, Agam N, Kustas B, Alfieri J, McKee L, McElrone A (2018) An intercomparison of radiation partitioning models in vineyard row structured canopies. Irrig Sci (this issue) Google Scholar
  49. Pope G, Treitz P (2013) Leaf area index (LAI) estimation in boreal mixedwood forest of Ontario, Canada using light detection and ranging (LiDAR) and WorldView-2 imagery. Remote Sens 5(10):5040–5063.  https://doi.org/10.3390/rs5105040 CrossRefGoogle Scholar
  50. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92.  https://doi.org/10.1175/1520-0493(1972)100%3c0081:OTAOSH%3e2.3.CO;2 CrossRefGoogle Scholar
  51. Santanello J Jr, Friedl M (2003) Diurnal covariation in soil heat flux and net radiation. J Appl Meteorol 42(6):851–862CrossRefGoogle Scholar
  52. Sauer TJ, Norman JM, Tanner CB, Wilson TB (1995) Measurement of heat and vapor transfer coefficients at the soil surface beneath a maize canopy using source plates. Agric For Meteorol 75(1–3):161–189.  https://doi.org/10.1016/0168-1923(94)02209-3 CrossRefGoogle Scholar
  53. Semmens KA, Anderson MC, Kustas WP, Gao F, Alfieri JG, McKee L, Prueger JH, Hain CR, Cammalleri C, Yang Y, Xia T, Sanchez L, Alsina MM, Vélez M (2016) Monitoring daily evapotranspiration over two california vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens Environ 185:155–170.  https://doi.org/10.1016/j.rse.2015.10.025 CrossRefGoogle Scholar
  54. Song L, Liu S, Zhang X, Zhou J, Li M (2015) Estimating and validating soil evaporation and crop transpiration during the HiWATER-MUSOEXE. IEEE Geosci Remote Sens Lett 12(2):334–338.  https://doi.org/10.1109/LGRS.2014.2339360 CrossRefGoogle Scholar
  55. Song L, Liu S, Kustas WP, Zhou J, Xu Z, Xia T, Li M (2016) Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agric For Meteorol 230231:8–19.  https://doi.org/10.1016/j.agrformet.2016.01.005 CrossRefGoogle Scholar
  56. Torres-Rua A (2017) Vicarious calibration of sUAS microbolometer temperature imagery for estimation of radiometric land surface temperature. Sensors 17:1499.  https://doi.org/10.3390/s17071499 CrossRefGoogle Scholar
  57. Torres-Rua A, Nieto H, Parry C, Alarab M, McKee M (2018) Inter-comparison of thermal sensors from ground aircraft, and satellite. Irrig Sci (this issue) Google Scholar
  58. Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194.  https://doi.org/10.1080/02723646.1981.10642213 CrossRefGoogle Scholar
  59. Xia T, Kustas WP, Anderson MC, Alfieri JG, Gao F, McKee L, Prueger JH, Geli HME, Neale CMU, Sanchez L, Alsina MM, Wang Z (2016) Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes. Hydrol Earth Syst Sci 20(4):1523–1545.  https://doi.org/10.5194/hess-20-1523-2016 CrossRefGoogle Scholar
  60. Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113(8):1628–1645.  https://doi.org/10.1016/j.rse.2009.03.006 CrossRefGoogle Scholar
  61. Zipper SC, Loheide SP II (2014) Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model. Agric For Meteorol 197:91–102.  https://doi.org/10.1016/j.agrformet.2014.06.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Héctor Nieto
    • 1
  • William P. Kustas
    • 2
  • Alfonso Torres-Rúa
    • 3
  • Joseph G. Alfieri
    • 2
  • Feng Gao
    • 2
  • Martha C. Anderson
    • 2
  • W. Alex White
    • 2
  • Lisheng Song
    • 5
  • María del Mar Alsina
    • 6
  • John H. Prueger
    • 7
  • Mac McKee
    • 4
  • Manal Elarab
    • 8
  • Lynn G. McKee
    • 2
  1. 1.IRTA, Institute of Agriculture and Food Research and TechnologyLleidaSpain
  2. 2.Hydrology and Remote Sensing Lab, USDA-Agricultural Research ServiceBeltsvilleUSA
  3. 3.Department of Civil and Environmental EngineeringUtah State UniversityLoganUSA
  4. 4.Utah Water Research LaboratoryUtah State UniversityLoganUSA
  5. 5.Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical SciencesSouthwest UniversityChongqingChina
  6. 6.E&J Gallo WineryModestoUSA
  7. 7.National Laboratory for Agriculture and the Environment, USDA-Agricultural Research ServiceAmesUSA
  8. 8.Manal ElarabMicasenseUSA

Personalised recommendations