CardioVascular and Interventional Radiology

, Volume 43, Issue 2, pp 273–283 | Cite as

No-Touch Multi-bipolar Radiofrequency Ablation for the Treatment of Subcapsular Hepatocellular Carcinoma ≤ 5 cm Not Puncturable via the Non-tumorous Liver Parenchyma

  • Arthur Petit
  • Arnaud Hocquelet
  • Gisèle N’kontchou
  • Eloi Varin
  • Nicolas Sellier
  • Olivier Seror
  • Olivier SutterEmail author
Clinical Investigation Interventional Oncology
Part of the following topical collections:
  1. Interventional Oncology



The percutaneous ablation of subcapsular hepatocellular carcinoma (S-HCC) may involve a risk of complications such as hemorrhage and tumor seeding, mainly linked to the direct tumor puncture often inevitable with mono-applicator ablation devices. The purpose of this study was to assess the efficacy and safety of no-touch multi-bipolar radiofrequency ablation (NTMBP-RFA) for the treatment of S-HCC ≤ 5 cm not puncturable via the non-tumorous liver parenchyma.

Materials and methods

Between September 2007 and December 2014, 58 consecutive patients (median age: 63 years [46–86], nine females) with 59 S-HCC ≤ 5 cm (median diameter: 25 mm [10–50 mm]), not puncturable via the non-tumorous liver parenchyma, were treated with NTMBP-RFA. Response and follow-up were assessed by CT or MRI. Complications were graded using the Cardiovascular and Interventional Radiological Society of Europe classification. Overall local tumor progression (OLTP)-free survival was assessed using the Kaplan–Meier method. A Cox proportional model evaluated the factors associated with OLTP. Signs of peritoneal or parietal tumor seeding were noted during follow-up imaging studies.


A complete ablation was achieved in 57/58 patients (98.3%) after one (n = 51) or two (n = 6) procedures. Three patients (5.2%) experienced complications (sepsis, cirrhosis decompensation; CIRSE grade 2 or 3). After a median follow-up period of 30.5 months [1–97], no patients had tumor seeding. The 1, 2 and 3-year OLTP-free survival rates were 98%, 94% and 91%, respectively. No factors were associated with OLTP.


NTMBP-RFA is a safe and effective treatment for S-HCC not puncturable via the non-tumorous liver parenchyma.


Hepatocellular carcinoma Multi-bipolar radiofrequency ablation Neoplasm seeding No-touch technique Subcapsular tumor 



This study was not supported by any funding.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Thisstudy has obtained approval from IRB and the need for informed consent was waived.

Consent for Publication

For this type of study, consent for publication is not required

Supplementary material

270_2019_2357_MOESM1_ESM.docx (184 kb)
Supplementary material 1 (DOCX 183 kb)


  1. 1.
    Liver EA for the S of the, Cancer EO for R and T of. EASL–EORTC Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.CrossRefGoogle Scholar
  2. 2.
    Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN. Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology. 2003;226:441–51.CrossRefGoogle Scholar
  3. 3.
    Bertot LC, Sato M, Tateishi R, Yoshida H, Koike K. Mortality and complication rates of percutaneous ablative techniques for the treatment of liver tumors: a systematic review. Eur Radiol. 2011;21:2584–96.CrossRefGoogle Scholar
  4. 4.
    Giorgio A, Merola MG, Montesarchio L, Merola F, Gatti P, Coppola C, et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma in cirrhosis: analysis of complications in a single centre over 20 years. Br J Radiol. 2017;90:20160804.CrossRefGoogle Scholar
  5. 5.
    Rhim H, Yoon K-H, Lee JM, Cho Y, Cho J-S, Kim SH, et al. Major complications after radio-frequency thermal ablation of hepatic tumors: spectrum of imaging findings. Radiogr Rev Publ Radiol Soc N Am Inc. 2003;23:123–34 discussion 134–6.Google Scholar
  6. 6.
    Jaskolka JD, Asch MR, Kachura JR, Ho CS, Ossip M, Wong F, et al. Needle tract seeding after radiofrequency ablation of hepatic tumors. J Vasc Interv Radiol. 2005;16:485–91.CrossRefGoogle Scholar
  7. 7.
    Kang TW, Lim HK, Lee MW, Kim Y-S, Rhim H, Lee WJ, et al. Long-term therapeutic outcomes of radiofrequency ablation for subcapsular versus nonsubcapsular hepatocellular carcinoma: a propensity score matched study. Radiology. 2016;280:300–12.CrossRefGoogle Scholar
  8. 8.
    Kim YJ, Raman SS, Yu NC, Busuttil RW, Tong M, Lu DSK. Radiofrequency ablation of hepatocellular carcinoma: can subcapsular tumors be safely ablated? AJR Am J Roentgenol. 2008;190:1029–34.CrossRefGoogle Scholar
  9. 9.
    Llovet JM, Vilana R, Brú C, Bianchi L, Salmeron JM, Boix L, et al. Increased risk of tumor seeding after percutaneous radiofrequency ablation for single hepatocellular carcinoma. Hepatol Baltim Md. 2001;33:1124–9.CrossRefGoogle Scholar
  10. 10.
    Livraghi T, Lazzaroni S, Meloni F, Solbiati L. Risk of tumour seeding after percutaneous radiofrequency ablation for hepatocellular carcinoma. Br J Surg. 2005;92:856–8.CrossRefGoogle Scholar
  11. 11.
    Sartori S, Tombesi P, Macario F, Nielsen I, Tassinari D, Catellani M, et al. Subcapsular liver tumors treated with percutaneous radiofrequency ablation: a prospective comparison with nonsubcapsular liver tumors for safety and effectiveness. Radiology. 2008;248:670–9.CrossRefGoogle Scholar
  12. 12.
    Poon RT-P, Ng KK-C, Lam C-M, Ai V, Yuen J, Fan S-T. Radiofrequency ablation for subcapsular hepatocellular carcinoma. Ann Surg Oncol. 2004;11:281–9.CrossRefGoogle Scholar
  13. 13.
    Francica G, Meloni MF, de Sio I, Smolock AR, Brace CL, Iadevaia MD, et al. Radiofrequency and microwave ablation of subcapsular hepatocellular carcinoma accessed by direct puncture: safety and efficacy. Eur J Radiol. 2016;85:739–43.CrossRefGoogle Scholar
  14. 14.
    Zhong-yi Z, Wei Y, Kun Y, Ying D, Wei W, Jung-chieh L, et al. Needle track seeding after percutaneous radiofrequency ablation of hepatocellular carcinoma: 14-year experience at a single centre. Int J Hyperth. 2017;33:454–8.CrossRefGoogle Scholar
  15. 15.
    Bonny C, Abergel A, Gayard P, Chouzet S, Ughetto S, Slim K, et al. Radiofrequency ablation of hepatocellular carcinoma in patients with cirrhosis. Gastroentérol Clin Biol. 2002;1220:665.Google Scholar
  16. 16.
    Crocetti L, de Baere T, Lencioni R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc Interv Radiol. 2010;33:11–7.CrossRefGoogle Scholar
  17. 17.
    Seror O, N’Kontchou G, Nault J-C, Rabahi Y, Nahon P, Ganne-Carrié N, et al. Hepatocellular carcinoma within Milan criteria: no-touch multibipolar radiofrequency ablation for treatment-long-term results. Radiology. 2016;280:981.CrossRefGoogle Scholar
  18. 18.
    Seror O. Percutaneous hepatic ablation: what needs to be known in 2014. Diagn Interv Imaging. 2014;95:665–75. CrossRefGoogle Scholar
  19. 19.
    Seror O, N’Kontchou G, Ibraheem M, Ajavon Y, Barrucand C, Ganne N, et al. Large (>or=5.0-cm) HCCs: multipolar RF ablation with three internally cooled bipolar electrodes–initial experience in 26 patients. Radiology. 2008;248:288–96. CrossRefGoogle Scholar
  20. 20.
    Mohkam K, Dumont P-N, Manichon A-F, Jouvet J-C, Boussel L, Merle P, et al. No-touch multibipolar radiofrequency ablation vs. surgical resection for solitary hepatocellular carcinoma ranging from 2 to 5 cm. J Hepatol. 2018;68:1172–80.CrossRefGoogle Scholar
  21. 21.
    N’Kontchou G, Nault J-C, Sutter O, Bourcier V, Coderc E, Grando V, et al. Multibipolar radiofrequency ablation for the treatment of mass-forming and infiltrative hepatocellular carcinomas > 5 cm: long-term results. Liver Cancer. 2018;1–14. Google Scholar
  22. 22.
    Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefGoogle Scholar
  23. 23.
    Motoyama T, Ogasawara S, Chiba T, Higashide T, Yokota H, Kanogawa N, et al. Coronal reformatted CT images contribute to the precise evaluation of the radiofrequency ablative margin for hepatocellular carcinoma. Abdom Imaging. 2014;39:262–8.CrossRefGoogle Scholar
  24. 24.
    Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL. Cirse quality assurance document and standards for classification of complications: the cirse classification system. Cardiovasc Interv Radiol. 2017;40:1141–6.CrossRefGoogle Scholar
  25. 25.
    Kang TW, Lim HK, Lee MW, Kim Y-S, Choi D, Rhim H. First-line radiofrequency ablation with or without artificial ascites for hepatocellular carcinomas in a subcapsular location: local control rate and risk of peritoneal seeding at long-term follow-up. Clin Radiol. 2013;68:e641–51.CrossRefGoogle Scholar
  26. 26.
    Patidar Y, Singhal P, Gupta S, Mukund A, Sarin SK. Radiofrequency ablation of surface v/s intraparenchymal hepatocellular carcinoma in cirrhotic patients. Indian J Radiol Imaging. 2017;27:496.CrossRefGoogle Scholar
  27. 27.
    Hocquelet A, Seror O, Blanc J-F, Frulio N, Salut C, Nault J-C, et al. Transarterial chemoembolization for early stage hepatocellular carcinoma decrease local tumor control and overall survival compared to radiofrequency ablation. Oncotarget. 2017;8:32190.CrossRefGoogle Scholar
  28. 28.
    Mohamed M, Katz AW, Tejani MA, Sharma AK, Kashyap R, Noel MS, et al. Comparison of outcomes between SBRT, yttrium-90 radioembolization, transarterial chemoembolization, and radiofrequency ablation as bridge to transplant for hepatocellular carcinoma. Adv Radiat Oncol. 2016;1:35–42.CrossRefGoogle Scholar
  29. 29.
    Park SI, Kim IJ, Lee SJ, Shin MW, Shin W, Chung YE, et al. Angled cool-tip electrode for radiofrequency ablation of small superficial subcapsular tumors in the liver: a feasibility study. Korean J Radiol. 2016;17:742.CrossRefGoogle Scholar
  30. 30.
    Hocquelet A, Aubé C, Rode A, Cartier V, Sutter O, Manichon AF, et al. Comparison of no-touch multi-bipolar vs. monopolar radiofrequency ablation for small HCC. J Hepatol. 2017;66:67–74.CrossRefGoogle Scholar
  31. 31.
    Seror O, N’Kontchou G, Van Nhieu JT, Rabahi Y, Nahon P, Laurent A, et al. Histopathologic comparison of monopolar versus no-touch multipolar radiofrequency ablation to treat hepatocellular carcinoma within Milan criteria. J Vasc Interv Radiol. 2014;25:599–607. CrossRefGoogle Scholar
  32. 32.
    Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Cancer Treat Rev. 2007;33:437–47.CrossRefGoogle Scholar
  33. 33.
    Chang W, Lee JM, Lee SM, Han JK. No-touch radiofrequency ablation: a comparison of switching bipolar and switching monopolar ablation in ex vivo bovine liver. Korean J Radiol. 2017;18:279.CrossRefGoogle Scholar
  34. 34.
    Chang W, Lee JM, Yoon JH, Lee DH, Lee SM, Lee KB, et al. No-touch radiofrequency ablation using multiple electrodes: an in vivo comparison study of switching monopolar versus switching bipolar modes in porcine livers. PLoS ONE. 2017;12:e0176350.CrossRefGoogle Scholar
  35. 35.
    Patel PA, Ingram L, Wilson IDC, Breen DJ. No-touch wedge ablation technique of microwave ablation for the treatment of subcapsular tumors in the liver. J Vasc Interv Radiol. 2013;24:1257–62.CrossRefGoogle Scholar
  36. 36.
    Nault J-C, Sutter O, Nahon P, Ganne-Carrié N, Séror O. Percutaneous treatment of hepatocellular carcinoma: state of the art and innovations. J Hepatol. 2018;68:783–97.Google Scholar
  37. 37.
    Ziegle J, Audigier C, Krug J, Ali G, Kim Y, Boctor EM, et al. RF-ablation pattern shaping employing switching channels of dual bipolar needle electrodes: ex vivo results. Int J Comput Assist Radiol Surg. 2018;13:905–16.CrossRefGoogle Scholar
  38. 38.
    de la Serna S, Vilana R, Sánchez-Cabús S, Calatayud D, Ferrer J, Molina V, et al. Results of laparoscopic radiofrequency ablation for HCC. Could the location of the tumour influence a complete response to treatment? A single European centre experience. HPB. 2015;17:387–93.CrossRefGoogle Scholar
  39. 39.
    Kawamura Y, Ikeda K, Fukushima T, Hara T, Hosaka T, Kobayashi M, et al. Potential of a no-touch pincer ablation procedure for small hepatocellular carcinoma that uses a multipolar radiofrequency ablation system: an experimental animal study: no-touch ablation procedure for hepatic tumors. Hepatol Res. 2014;44:1234–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2019

Authors and Affiliations

  1. 1.Radiology Department, Hôpital Jean Verdier (APHP)Hôpitaux universitaires Paris-Seine-Saint-Denis, Assistfance Publique Hôpitaux de ParisBondyFrance
  2. 2.Diagnostic and Interventional Radiology DepartmentCHU VaudoisLausanneSwitzerland
  3. 3.Hepatology Department, Hôpital Jean VerdierHôpitaux universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de ParisBondyFrance
  4. 4.Unité de Formation et de Recherche Santé Médecine et Biologie HumaineUniversité Paris 13, communauté d’universités et établissements Sorbonne Paris citéParisFrance
  5. 5.Unité mixte de recherche 1162, Génomique Fonctionnelle des Tumeurs SolidesInstitut National de la Santé et de la Recherche MédicaleParisFrance

Personalised recommendations