Advertisement

CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A Proof of Concept

  • Dania DayeEmail author
  • Pedro V. Staziaki
  • Vanessa Fiorini Furtado
  • Azadeh Tabari
  • Florian J. Fintelmann
  • Nathan Elie Frenk
  • Paul Shyn
  • Kemal Tuncali
  • Stuart Silverman
  • Ronald Arellano
  • Michael S. Gee
  • Raul Nirmal Uppot
Clinical Investigation Other
Part of the following topical collections:
  1. Other

Abstract

Introduction

To assess the performance of pre-ablation computed tomography texture features of adrenal metastases to predict post-treatment local progression and survival in patients who underwent ablation using machine learning as a prediction tool.

Materials and Methods

This is a pilot retrospective study of patients with adrenal metastases undergoing ablation. Clinical variables were collected. Thirty-two texture features were extracted from manually segmented adrenal tumors. A univariate cox proportional hazard model was used for prediction of local progression and survival. A linear support vector machine (SVM) learning technique was applied to the texture features and clinical variables, with leave-one-out cross-validation. Receiver operating characteristic analysis and the area under the curve (AUC) were used to assess performance between using clinical variables only versus clinical variables and texture features.

Results

Twenty-one patients (61% male, age 64.1 ± 10.3 years) were included. Mean time to local progression was 29.8 months. Five texture features exhibited association with progression (p < 0.05). The SVM model based on clinical variables alone resulted in an AUC of 0.52, whereas the SVM model that included texture features resulted in an AUC 0.93 (p = 0.01). Mean overall survival was 35 months. Fourteen texture features were associated with survival in the univariate model (p < 0.05). While the trained SVM model based on clinical variables resulted in an AUC of 0.68, the SVM model that included texture features resulted in an AUC of 0.93 (p = 0.024).

Discussion

Pre-ablation texture analysis and machine learning improve local tumor progression and survival prediction in patients with adrenal metastases who undergo ablation.

Keywords

Radiomics Machine learning Prognostication Texture analysis Ablation Adrenal metastasis 

Notes

Funding

This study was not supported by any funding.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Supplementary material

270_2019_2336_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (DOCX 69 kb)

References

  1. 1.
    Abrams HL, Spiro R, Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer. 1950;3(1):74–85.Google Scholar
  2. 2.
    Lam KY, Lo CY. Metastatic tumours of the adrenal glands: a 30-year experience in a teaching hospital. Clin Endocrinol. 2002;56(1):95–101.Google Scholar
  3. 3.
    Fintelmann FJ, Tuncali K, Puchner S, Gervais DA, Thabet A, Shyn PB, et al. Catecholamine surge during image-guided ablation of adrenal gland metastases: predictors, consequences, and recommendations for management. J Vasc Interv Radiol. 2016;27(3):395–402.  https://doi.org/10.1016/j.jvir.2015.11.034.Google Scholar
  4. 4.
    Wang Y, Liang P, Yu X, Cheng Z, Yu J, Dong J. Ultrasound-guided percutaneous microwave ablation of adrenal metastasis: preliminary results. Int J Hyperthermia. 2009;25(6):455–61.  https://doi.org/10.1080/02656730903066608.Google Scholar
  5. 5.
    Li X, Fan W, Zhang L, Zhao M, Huang Z, Li W, et al. CT-guided percutaneous microwave ablation of adrenal malignant carcinoma: preliminary results. Cancer. 2011;117(22):5182–8.  https://doi.org/10.1002/cncr.26128.Google Scholar
  6. 6.
    Hasegawa T, Yamakado K, Nakatsuka A, Uraki J, Yamanaka T, Fujimori M, et al. Unresectable adrenal metastases: clinical outcomes of radiofrequency ablation. Radiology. 2015;277(2):584–93.  https://doi.org/10.1148/radiol.2015142029.Google Scholar
  7. 7.
    Kuehl H, Stattaus J, Forsting M, Antoch G. Transhepatic CT-guided radiofrequency ablation of adrenal metastases from hepatocellular carcinoma. Cardiovasc Interv Radiol. 2008;31(6):1210–4.  https://doi.org/10.1007/s00270-008-9377-6.Google Scholar
  8. 8.
    Mouracade P, Dettloff H, Schneider M, Debras B, Jung JL. Radio-frequency ablation of solitary adrenal gland metastasis from renal cell carcinoma. Urology. 2009;74(6):1341–3.  https://doi.org/10.1016/j.urology.2009.06.058.Google Scholar
  9. 9.
    Welch BT, Callstrom MR, Carpenter PC, Wass CT, Welch TL, Boorjian SA, et al. A single-institution experience in image-guided thermal ablation of adrenal gland metastases. J Vasc Interv Radiol. 2014;25(4):593–8.  https://doi.org/10.1016/j.jvir.2013.12.013.Google Scholar
  10. 10.
    Yamakado K, Anai H, Takaki H, Sakaguchi H, Tanaka T, Kichikawa K, et al. Adrenal metastasis from hepatocellular carcinoma: radiofrequency ablation combined with adrenal arterial chemoembolization in six patients. AJR Am J Roentgenol. 2009;192(6):W300–5.  https://doi.org/10.2214/ajr.08.1752.Google Scholar
  11. 11.
    Wolf FJ, Dupuy DE, Machan JT, Mayo-Smith WW. Adrenal neoplasms: effectiveness and safety of CT-guided ablation of 23 tumors in 22 patients. Eur J Radiol. 2012;81(8):1717–23.  https://doi.org/10.1016/j.ejrad.2011.04.054.Google Scholar
  12. 12.
    Carrafiello G, Lagana D, Recaldini C, Giorgianni A, Ianniello A, Lumia D, et al. Imaging-guided percutaneous radiofrequency ablation of adrenal metastases: preliminary results at a single institution with a single device. Cardiovasc Interv Radiol. 2008;31(4):762–7.  https://doi.org/10.1007/s00270-008-9337-1.Google Scholar
  13. 13.
    Ren C, Liang P, Yu XL, Cheng ZG, Han ZY, Yu J. Percutaneous microwave ablation of adrenal tumours under ultrasound guidance in 33 patients with 35 tumours: a single-centre experience. Int J Hyperthermia. 2016;32(5):517–23.  https://doi.org/10.3109/02656736.2016.1164905.Google Scholar
  14. 14.
    Frenk NE, Daye D, Tuncali K, Arellano RS, Shyn PB, Silverman SG, et al. Local control and survival after image-guided percutaneous ablation of adrenal metastases. J Vasc Interv Radiol. 2018;29(2):276–84.  https://doi.org/10.1016/j.jvir.2017.07.026.Google Scholar
  15. 15.
    Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261(1):165–71.  https://doi.org/10.1148/radiol.11110264.Google Scholar
  16. 16.
    Miles KA, Ganeshan B, Griffiths MR, Young RC, Chatwin CR. Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology. 2009;250(2):444–52.  https://doi.org/10.1148/radiol.2502071879.Google Scholar
  17. 17.
    Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266(1):326–36.  https://doi.org/10.1148/radiol.12112428.Google Scholar
  18. 18.
    Tang X. Texture information in run-length matrices. IEEE Trans Image Process. 1998;7(11):1602–9.  https://doi.org/10.1109/83.725367.Google Scholar
  19. 19.
    Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.  https://doi.org/10.1109/tsmc.1973.4309314.Google Scholar
  20. 20.
    Mayo RC, Leung J. Artificial intelligence and deep learning—radiology’s next frontier? Clin Imaging. 2018;49:87–8.  https://doi.org/10.1016/j.clinimag.2017.11.007.Google Scholar
  21. 21.
    Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.  https://doi.org/10.1148/rg.2017160130.Google Scholar
  22. 22.
    Yoshida H, Nappi J. CAD in CT colonography without and with oral contrast agents: progress and challenges. Comput Med Imaging Graph. 2007;31(4–5):267–84.  https://doi.org/10.1016/j.compmedimag.2007.02.011.Google Scholar
  23. 23.
    Chan HP, Lo SC, Sahiner B, Lam KL, Helvie MA. Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. Med Phys. 1995;22(10):1555–67.  https://doi.org/10.1118/1.597428.Google Scholar
  24. 24.
    Lee H, Troschel FM, Tajmir S, Fuchs G, Mario J, Fintelmann FJ, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017;30(4):487–98.  https://doi.org/10.1007/s10278-017-9988-z.Google Scholar
  25. 25.
    Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9.  https://doi.org/10.1016/j.crad.2004.07.008.Google Scholar
  26. 26.
    Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.Google Scholar
  27. 27.
    Hau CC. Handbook of pattern recognition and computer vision. Singapore: World Scientific; 2015.Google Scholar
  28. 28.
    Laws KI. Textured image segmentation: University of Southern California Los Angeles Image Processing INST; 1980.Google Scholar
  29. 29.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.Google Scholar
  30. 30.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.  https://doi.org/10.1148/radiol.2015151169.Google Scholar
  31. 31.
    Sasaguri K, Takahashi N, Takeuchi M, Carter RE, Leibovich BC, Kawashima A. Differentiation of benign from metastatic adrenal masses in patients with renal cell carcinoma on contrast-enhanced CT. AJR Am J Roentgenol. 2016;207(5):1031–8.  https://doi.org/10.2214/ajr.16.16193.Google Scholar
  32. 32.
    Tu W, Verma R, Krishna S, McInnes MDF, Flood TA, Schieda N. Can adrenal adenomas be differentiated from adrenal metastases at single-phase contrast-enhanced CT? AJR Am J Roentgenol. 2018;211(5):1044–50.  https://doi.org/10.2214/ajr.17.19276.Google Scholar
  33. 33.
    Schieda N, Krishna S, McInnes MDF, Moosavi B, Alrashed A, Moreland R, et al. Utility of MRI to differentiate clear cell renal cell carcinoma adrenal metastases from adrenal adenomas. AJR Am J Roentgenol. 2017;209(3):W152–9.  https://doi.org/10.2214/ajr.16.17649.Google Scholar
  34. 34.
    Yi X, Guan X, Chen C, Zhang Y, Zhang Z, Li M, et al. Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J Cancer. 2018;9(19):3577–82.  https://doi.org/10.7150/jca.26356.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2019

Authors and Affiliations

  • Dania Daye
    • 1
    Email author
  • Pedro V. Staziaki
    • 2
  • Vanessa Fiorini Furtado
    • 3
  • Azadeh Tabari
    • 1
  • Florian J. Fintelmann
    • 1
  • Nathan Elie Frenk
    • 1
  • Paul Shyn
    • 4
  • Kemal Tuncali
    • 4
  • Stuart Silverman
    • 4
  • Ronald Arellano
    • 1
  • Michael S. Gee
    • 1
  • Raul Nirmal Uppot
    • 1
  1. 1.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of RadiologyBoston Medical Center, Boston University School of MedicineBostonUSA
  3. 3.Department of Internal MedicineUniversity of Massachusetts, UMassWorcesterUSA
  4. 4.Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations