Advertisement

Efficacy of the Vertebral Body Stenting System for the Restoration of Vertebral Height in Acute Traumatic Compression Fractures in a Non-osteoporotic Population

  • Julien GarnonEmail author
  • Benjamin Doré
  • Pierre Auloge
  • Jean Caudrelier
  • Danoob Dalili
  • Nitin Ramamurthy
  • Guillaume Koch
  • Roberto Luigi Cazzato
  • Afshin Gangi
Clinical Investigation Non-Vascular Interventions
  • 2 Downloads
Part of the following topical collections:
  1. Non-Vascular Interventions

Abstract

Introduction

To evaluate the effectiveness of percutaneous image-guided vertebral body stenting (VBS) at restoring vertebral height in acute, stable, traumatic thoracolumbar fractures in a young, non-osteoporotic population.

Materials and Methods

A single-centre retrospective review of all traumatic non-osteoporotic fractures treated with VBS between 2010 and 2017 was performed. Inclusion criteria included patients with recent (< 10 days), symptomatic and stable thoracolumbar compression fractures. Patients with low-energy fractures, osteoporosis and age > 60/50 years (male/female) were excluded. Primary outcomes included: correction of vertebral height, correction of kyphosis angle and Beck Index on reconstructed pre- and post-procedural CBCT images. Secondary outcomes included intra-procedural stent recoil, complications, cement leakage and factors predicting height restoration.

Results

Thirty-nine patients (26 men, 13 women; mean age 33.6 years, range 15–57 years) underwent VBS 5 days post-trauma on average (range 1–10), for stable compression fractures located between T5 and L5. Mean vertebral height gain, vertebral kyphosis angle correction and Beck index improvement were 3.8 mm (95% CI 3.36–4.50; P(> 3 mm) = 99.9%), 4.3° (95% CI 3.50–5.20; P(> 3°) = 99.9%) and 0.07 [95% CI 0.053–0.11], respectively (all statistically significant). Technical success was 92%, with 3 “major” stent recoils resulting in loss of vertebral height correction. No symptomatic complications were observed. No predictive factors for procedural success were identified.

Conclusion

VBS can significantly restore vertebral height in young patients with traumatic vertebral compression fractures.

Keywords

Compression fractures Stentoplasty Vertebroplasty Vertebral body stenting 

Notes

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Filippiadis DK, Marcia S, Masala S, et al. Percutaneous vertebroplasty and kyphoplasty: current status, new developments and old controversies. Cardiovasc Intervent Radiol. 2017;40(12):1815–23.  https://doi.org/10.1007/s00270-017-1779-x.CrossRefGoogle Scholar
  2. 2.
    Filippiadis DK, Marcia S, Ryan A, et al. New implant-based technologies in the spine. Cardiovasc Intervent Radiol. 2018;41(10):1463–73.  https://doi.org/10.1007/s00270-018-1987-z.CrossRefGoogle Scholar
  3. 3.
    Amoretti N. Early percutaneous vertebroplasty helps motorsport professionals to resume competition soon after vertebral fracture. Eur Radiol. 2018;28(7):2870–1.  https://doi.org/10.1007/s00330-017-5250-9.CrossRefGoogle Scholar
  4. 4.
    Huwart L, Foti P, Andreani O, et al. Vertebral split fractures: technical feasibility of percutaneous vertebroplasty. Eur J Radiol. 2014;83(1):173–8.CrossRefGoogle Scholar
  5. 5.
    Amoretti N, Huwart L. Combination of percutaneous osteosynthesis and vertebroplasty of thoracolumbar split fractures under CT and fluoroscopy guidance: a new technique. Cardiovasc Intervent Radiol. 2014;37(5):1363–8.  https://doi.org/10.1007/s00270-014-0849-6.CrossRefGoogle Scholar
  6. 6.
    de Falco R, Scarano E, Di Celmo D, et al. Balloon kyphoplasty in traumatic fractures of the thoracolumbar junction. Preliminary experience in 12 cases. J Neurosurg Sci. 2005;49(4):147–53.Google Scholar
  7. 7.
    Hartmann F, Gercek E, Leiner L, et al. Kyphoplasty as an alternative treatment of traumatic thoracolumbar burst fractures Magerl type A3. Injury. 2012;43(4):409–15.  https://doi.org/10.1016/j.injury.2010.03.025.CrossRefGoogle Scholar
  8. 8.
    Tsai PJ, Hsieh MK, Fan KF, et al. Is additional balloon Kyphoplasty safe and effective for acute thoracolumbar burst fracture? BMC Musculoskelet Disord. 2017;18(1):393.  https://doi.org/10.1186/s12891-017-1753-4.CrossRefGoogle Scholar
  9. 9.
    Verlaan JJ, Somers I, Dhert WJ, et al. Clinical and radiological results 6 years after treatment of traumatic thoracolumbar burst fractures with pedicle screw instrumentation and balloon assisted endplate reduction. Spine J. 2015;15(6):1172–8.  https://doi.org/10.1016/j.spinee.2013.11.044.CrossRefGoogle Scholar
  10. 10.
    Hitchon PW, Abode-Iyamah K, Dahdaleh NS, et al. Nonoperative management in neurologically intact thoracolumbar burst fractures: clinical and radiographic outcomes. Spine (Phila Pa 1976). 2016;41(6):483–9.  https://doi.org/10.1097/brs.0000000000001253.CrossRefGoogle Scholar
  11. 11.
    Shamji MF, Roffey DM, Young DK, et al. A pilot evaluation of the role of bracing in stable thoracolumbar burst fractures without neurological deficit. J Spinal Disord Tech. 2014;27(7):370–5.  https://doi.org/10.1097/BSD.0b013e31826eacae.CrossRefGoogle Scholar
  12. 12.
    Thomas AM, Fahim DK. Stand-alone balloon kyphoplasty for the treatment of a traumatic burst fracture in a pediatric patient: case report. World Neurosurg. 2019.  https://doi.org/10.1016/j.wneu.2019.01.184.Google Scholar
  13. 13.
    Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine. 2001;26(2):151–6.CrossRefGoogle Scholar
  14. 14.
    Wang H, Sribastav SS, Ye F, et al. Comparison of percutaneous vertebroplasty and balloon kyphoplasty for the treatment of single level vertebral compression fractures: a meta-analysis of the literature. Pain Phys. 2015;18(3):209–22.Google Scholar
  15. 15.
    Saliou G, Rutgers DR, Kocheida EM, et al. Balloon-related complications and technical failures in kyphoplasty for vertebral fractures. AJNR Am J Neuroradiol. 2010;31(1):175–9.CrossRefGoogle Scholar
  16. 16.
    Verlaan JJ, van de Kraats EB, Oner FC, et al. The reduction of endplate fractures during balloon vertebroplasty: a detailed radiological analysis of the treatment of burst fractures using pedicle screws, balloon vertebroplasty, and calcium phosphate cement. Spine (Phila Pa 1976). 2005;30(16):1840–5.CrossRefGoogle Scholar
  17. 17.
    Vanni D, Pantalone A, Bigossi F, et al. New perspective for third generation percutaneous vertebral augmentation procedures: preliminary results at 12 months. J Craniovertebral Junction Spine. 2012;3(2):47–51.CrossRefGoogle Scholar
  18. 18.
    Marcia S, Saba L, Marras M, et al. Percutaneous stabilization of lumbar spine: a literature review and new options in treating spine pain. Br J Radiol. 2016;89(1065):20150436.CrossRefGoogle Scholar
  19. 19.
    Muto M, Marcia S, Guarnieri G, et al. Assisted techniques for vertebral cementoplasty: why should we do it? Eur J Radiol. 2015;84(5):783–8.  https://doi.org/10.1016/j.ejrad.2014.04.002.CrossRefGoogle Scholar
  20. 20.
    Vanni D, Pantalone A, Bigossi F, et al. New perspective for third generation percutaneous vertebral augmentation procedures: preliminary results at 12 months. J Craniovertebral Junction Spine. 2012;3(2):47–51.CrossRefGoogle Scholar
  21. 21.
    Marcia S, Saba L, Marras M, et al. Percutaneous stabilization of lumbar spine: a literature review and new options in treating spine pain. Br J Radiol. 2016;89(1065):20150436.CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Martín-López JE, Pavón-Gómez MJ, Romero-Tabares A, et al. Stentoplasty effectiveness and safety for the treatment of osteoporotic vertebral fractures: a systematic review. Orthop Traumatol Surg Res. 2015;101(5):627–32.  https://doi.org/10.1016/j.otsr.2015.06.002.CrossRefGoogle Scholar
  24. 24.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3:184–201.CrossRefGoogle Scholar
  25. 25.
    Bousson V, Hamze B, Odri G, et al. Percutaneous vertebral augmentation techniques in osteoporotic and traumatic fractures. Semin Intervent Radiol. 2018;35(4):309–23.  https://doi.org/10.1055/s-0038-1673639.CrossRefGoogle Scholar
  26. 26.
    Beck E. Radiographic measuring methods in vertebral fractures. Hefte zur Unfallheilkunde. 1971;108:36–7.Google Scholar
  27. 27.
    Filippiadis DK, Binkert C, Pellerin O, et al. Cirse quality assurance document and standards for classification of complications: the cirse classification system. Cardiovasc Intervent Radiol. 2017;40(8):1141–6.  https://doi.org/10.1007/s00270-017-1703-4.CrossRefGoogle Scholar
  28. 28.
    Maestretti G, Sutter P, Monnard E, et al. A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures: 10-year results. Eur Spine J. 2014;23(6):1354–60.CrossRefGoogle Scholar
  29. 29.
    Piazzolla A, De Giorgi S, Solarino G, et al. Vertebral body reconstruction system B-Twin(R) versus corset following non-osteoporotic Magerl A.12 thoracic and lumbar fracture. Functional and radiological outcome at 12 month follow-up in a prospective randomized series of 50 patients. Orthop Traumatol Surg Res OTSR. 2011;97(8):846–51.CrossRefGoogle Scholar
  30. 30.
    Furderer S, Anders M, Schwindling B, et al. Vertebral body stenting. A method for repositioning and augmenting vertebral compression fractures. Der Orthopade. 2002;31(4):356–61.CrossRefGoogle Scholar
  31. 31.
    Muto M, Greco B, Setola F, et al. Vertebral body stenting system for the treatment of osteoporotic vertebral compression fracture: follow-up at 12 months in 20 cases. Neuroradiol J. 2011;24(4):610–9.CrossRefGoogle Scholar
  32. 32.
    Klezl Z, Majeed H, Bommireddy R, et al. Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine. Injury. 2011;42(10):1038–42.CrossRefGoogle Scholar
  33. 33.
    Werner CM, Osterhoff G, Schlickeiser J, et al. Vertebral body stenting versus kyphoplasty for the treatment of osteoporotic vertebral compression fractures: a randomized trial. J Bone Joint Surg Am. 2013;95(7):577–84.CrossRefGoogle Scholar
  34. 34.
    Matejka J, Zeman J, Belatka J, et al. Vertebral body augmentation using a vertebral body stent. Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca. 2011;78(5):442–6.Google Scholar
  35. 35.
    Diel P, Roder C, Perler G, et al. Radiographic and safety details of vertebral body stenting: results from a multicenter chart review. BMC Musculoskelet Disord. 2013;14:233.CrossRefGoogle Scholar
  36. 36.
    Thaler M, Lechner R, Nogler M, et al. Surgical procedure and initial radiographic results of a new augmentation technique for vertebral compression fractures. Eur Spine J. 2013;22(7):1608–16.CrossRefGoogle Scholar
  37. 37.
    Hartmann F, Griese M, Dietz SO, et al. Two-year results of vertebral body stenting for the treatment of traumatic incomplete burst fractures. Minim Invasive Ther Allied Technol. 2015;24(3):161–6.  https://doi.org/10.3109/13645706.2014.962546.CrossRefGoogle Scholar
  38. 38.
    Hulme PA, Krebs J, Ferguson SJ, et al. Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine. 2006;31(17):1983–2001.CrossRefGoogle Scholar
  39. 39.
    Wardlaw D, Cummings SR, Van Meirhaeghe J, et al. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet. 2009;373(9668):1016–24.CrossRefGoogle Scholar
  40. 40.
    Cawley DT, Sexton P, Murphy T, et al. Optimal patient positioning for ligamentotaxis during balloon kyphoplasty of the thoracolumbar and lumbar spine. J Clin Neurosci. 2011;18(6):834–6.  https://doi.org/10.1016/j.jocn.2010.10.009.CrossRefGoogle Scholar
  41. 41.
    Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res. 2017;35(2):213–23.  https://doi.org/10.1002/jor.23460.CrossRefGoogle Scholar
  42. 42.
    Rotter R, Martin H, Fuerderer S, et al. Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty. Eur Spine J. 2010;19(6):916–23.CrossRefGoogle Scholar
  43. 43.
    Disch AC, Schmoelz W. Cement augmentation in a thoracolumbar fracture model: reduction and stability after balloon kyphoplasty versus vertebral body stenting. Spine. 2014;39(19):E1147–53.CrossRefGoogle Scholar
  44. 44.
    Werner CM, Osterhoff G, Schlickeiser J, et al. Vertebral body stenting versus kyphoplasty for the treatment of osteoporotic vertebral compression fractures: a randomized trial. J Bone Joint Surg Am. 2013;95(7):577–84.CrossRefGoogle Scholar
  45. 45.
    Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38(2):155–82.CrossRefGoogle Scholar
  46. 46.
    Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6 Suppl):305S–16S.CrossRefGoogle Scholar
  47. 47.
    Martelli N, Devaux C, van den Brink H, Pineau J, Prognon P, Borget I. A systematic review of the level of evidence in economic evaluations of medical devices: the example of vertebroplasty and kyphoplasty. PLoS ONE. 2015;10(12):e0144892.  https://doi.org/10.1371/journal.pone.0144892.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2019

Authors and Affiliations

  • Julien Garnon
    • 1
    Email author
  • Benjamin Doré
    • 1
    • 2
  • Pierre Auloge
    • 1
  • Jean Caudrelier
    • 1
  • Danoob Dalili
    • 3
  • Nitin Ramamurthy
    • 4
  • Guillaume Koch
    • 1
  • Roberto Luigi Cazzato
    • 1
  • Afshin Gangi
    • 1
  1. 1.Department of Interventional RadiologyNouvel Hôpital CivilStrasbourg CedexFrance
  2. 2.Department of Medical Imaging, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGroupe des hôpitaux universitaires Paris Ile de France OuestGarchesFrance
  3. 3.Department of RadiologyGuy’s and St. Thomas’ Hospitals NHS Foundation TrustLondonUK
  4. 4.Department of RadiologyNorfolk and Norwich University HospitalNorwichUK

Personalised recommendations